Ren Yu-Xuan, Yip Gwinky G K, Zhou Lei-Ming, Qiu Cheng-Wei, Shi Jiawei, Zhou Yi, Mao Huade, Tsia Kevin K, Wong Kenneth K Y
Institute for Translational Brain Research, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road 999077, Hong Kong SAR, China.
Nanophotonics. 2022 Aug 9;11(18):4231-4244. doi: 10.1515/nanoph-2022-0312. eCollection 2022 Sep.
Reversible control over the microparticle motion using light excites interesting applications in optofluidics, microswimmers, artificial optical matter, and biomedical engineering. The dielectric microspheres swim towards the near infrared pulsed laser in response to the backaction force mediated by photonic nanojet. Hereby, we report that the backaction force exhibits hysteretic behaviour owing to the distinguishable responses of the temperature rise inside the nanojet and the temperature rise of the liquid ensemble. Accordingly, the magnitude of backaction force at the same laser power varies between power increase and decrease stages. In order to develop multidimensional manipulation tool, we studied the possibility of using lasers with different spatiotemporal profiles to mediate the backaction force, and developed the counterpropagating beam scheme for reversible control of the particle motion directions. We further harness the hysteresis to reverse the direction of backaction force on dielectric particles in presence of a constant force from a counter-propagating beam with broadband supercontinuum spectrum. In contrast to the microsphere caught in the single beam gradient trap, the microsphere encounters augmented Brownian motion at higher balanced power level. The microsphere would eventually escape from the common region of the paired beams, enabling high throughput morphology analysis for cancer cell classification, biopsy, and diagnosis.
利用光对微粒运动进行可逆控制,在光流体学、微泳器、人工光学物质和生物医学工程等领域激发了有趣的应用。介电微球会响应由光子纳米射流介导的反作用力,朝着近红外脉冲激光游动。在此,我们报告反作用力呈现出滞后行为,这是由于纳米射流内部的温度上升与液体整体的温度上升有明显不同的响应。因此,在相同激光功率下,反作用力的大小在功率增加和降低阶段有所不同。为了开发多维操纵工具,我们研究了使用具有不同时空分布的激光来介导反作用力的可能性,并开发了反向传播光束方案以可逆地控制粒子运动方向。我们进一步利用这种滞后现象,在存在来自具有宽带超连续谱的反向传播光束的恒定力的情况下,使介电粒子上的反作用力方向反转。与被困在单光束梯度阱中的微球不同,微球在更高的平衡功率水平下会遇到增强的布朗运动。微球最终会从成对光束的公共区域逸出,从而实现用于癌细胞分类、活检和诊断的高通量形态分析。