文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

葡萄糖调节蛋白 78 靶向载吲哚菁绿和多柔比星的中空 FeO 纳米粒子用于肝细胞癌的诊断和治疗。

Glucose-Regulated Protein 78 Targeting ICG and DOX Loaded Hollow FeO Nanoparticles for Hepatocellular Carcinoma Diagnosis and Therapy.

机构信息

Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Prevention and Control, Beijing, 100013, People's Republic of China.

Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, People's Republic of China.

出版信息

Int J Nanomedicine. 2024 Jan 8;19:189-208. doi: 10.2147/IJN.S428687. eCollection 2024.


DOI:10.2147/IJN.S428687
PMID:38223882
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10785830/
Abstract

PURPOSE: Liver cancer is considered as the third leading cause of cancer-related deaths, with hepatocellular carcinoma (HCC) accounting for approximately 90% of liver cancers. Improving the treatment of HCC is a serious challenge today. The primary objective of this study was to construct SP94-FeO@ICG&DOX nanoparticles and investigate their potential diagnosis and treatment effect benefits on HCC. METHODS: Firstly, we synthesized and characterized SP94-FeO@ICG&DOX nanoparticles and confirmed their in vitro release behavior, photothermal and photodynamic performance. Moreover, the in vivo imaging capability was also observed. Finally, the inhibitory effects on Hepa1-6 in vitro and in vivo were observed as well as biosafety. RESULTS: SP94-FeO@ICG&DOX nanoparticles have a size of ~22.1 nm, with an encapsulation efficiency of 45.2% for ICG and 42.7% for DOX, showing excellent in vivo MPI and fluorescence imaging capabilities for precise tumor localization, and synergistic photo-chemotherapy (pH- and thermal-sensitive drug release) against tumors under irradiation. With the assistance of a fluorescence molecular imaging system or MPI scanner, the location and contours of the tumor were clearly visible. Under a constant laser irradiation (808 nm, 0.6 W/cm) and a set concentration (50 µg/mL), the temperature of the solution could rapidly increase to ~45 °C, which could effectively kill the tumor cells. It could be effectively uptaken by HCC cells and significantly inhibit their proliferation under the laser irradiation (100% inhibition rate for HCC tumors). And most importantly, our nanoparticles exhibited favorable biocompatibility with normal tissues and cells. CONCLUSION: This versatile agent can serve as an intelligent and promising nanoplatform that integrates multiple accurate diagnoses, precise positioning of cancer tissue, and effective coordination with synergistic tumor photodynamic therapy.

摘要

目的:肝癌被认为是癌症相关死亡的第三大主要原因,其中肝细胞癌(HCC)约占肝癌的 90%。改善 HCC 的治疗效果是当前面临的严峻挑战。本研究的主要目的是构建 SP94-FeO@ICG&DOX 纳米粒子,并研究其对 HCC 的潜在诊断和治疗效果。

方法:首先,我们合成并表征了 SP94-FeO@ICG&DOX 纳米粒子,并证实了其体外释放行为、光热和光动力性能。此外,还观察了其体内成像能力。最后,观察了 SP94-FeO@ICG&DOX 纳米粒子对 Hepa1-6 的体外和体内抑制作用以及生物安全性。

结果:SP94-FeO@ICG&DOX 纳米粒子的粒径约为 22.1nm,ICG 的包封效率为 45.2%,DOX 的包封效率为 42.7%,具有优异的体内 MPI 和荧光成像能力,可实现肿瘤的精确定位,并在辐照下发挥协同光化疗作用(pH 和热敏感药物释放)。借助荧光分子成像系统或 MPI 扫描仪,可以清晰地看到肿瘤的位置和轮廓。在恒定的激光照射(808nm,0.6W/cm)和设定的浓度(50μg/mL)下,溶液的温度可以迅速升高到~45°C,从而有效地杀死肿瘤细胞。它可以被 HCC 细胞有效摄取,并在激光照射下显著抑制其增殖(HCC 肿瘤的抑制率达到 100%)。最重要的是,我们的纳米粒子表现出对正常组织和细胞的良好生物相容性。

结论:这种多功能制剂可以作为一种智能且有前途的纳米平台,集成了多种精确诊断、癌症组织的精确定位以及与协同肿瘤光动力治疗的有效协调。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/10785830/8d5c15852681/IJN-19-189-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/10785830/24bf14ef6c73/IJN-19-189-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/10785830/1ef591ecd92e/IJN-19-189-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/10785830/e8d3c68fbf3b/IJN-19-189-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/10785830/0c9d07149736/IJN-19-189-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/10785830/38f916fe0788/IJN-19-189-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/10785830/1975f66a550e/IJN-19-189-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/10785830/5ccb389580c1/IJN-19-189-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/10785830/473acc6ab0ca/IJN-19-189-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/10785830/cf954f8305c7/IJN-19-189-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/10785830/ca64a36b3ced/IJN-19-189-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/10785830/8d5c15852681/IJN-19-189-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/10785830/24bf14ef6c73/IJN-19-189-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/10785830/1ef591ecd92e/IJN-19-189-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/10785830/e8d3c68fbf3b/IJN-19-189-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/10785830/0c9d07149736/IJN-19-189-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/10785830/38f916fe0788/IJN-19-189-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/10785830/1975f66a550e/IJN-19-189-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/10785830/5ccb389580c1/IJN-19-189-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/10785830/473acc6ab0ca/IJN-19-189-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/10785830/cf954f8305c7/IJN-19-189-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/10785830/ca64a36b3ced/IJN-19-189-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b605/10785830/8d5c15852681/IJN-19-189-g0011.jpg

相似文献

[1]
Glucose-Regulated Protein 78 Targeting ICG and DOX Loaded Hollow FeO Nanoparticles for Hepatocellular Carcinoma Diagnosis and Therapy.

Int J Nanomedicine. 2024

[2]
Indocyanine Green-Based Theranostic Nanoplatform for NIR Fluorescence Image-Guided Chemo/Photothermal Therapy of Cervical Cancer.

Int J Nanomedicine. 2021

[3]
Multifunctional Nanoparticles Codelivering Doxorubicin and Amorphous Calcium Carbonate Preloaded with Indocyanine Green for Enhanced Chemo-Photothermal Cancer Therapy.

Int J Nanomedicine. 2023

[4]
An inorganic-organic-polymeric nanovehicle for targeting delivery of doxorubicin: Rational assembly, pH-stimulus release, and dual hyperthermia/chemotherapy of hepatocellular carcinoma.

J Photochem Photobiol B. 2023-4

[5]
An injectable thermosensitive hydrogel loaded with a theranostic nanoprobe for synergistic chemo-photothermal therapy for multidrug-resistant hepatocellular carcinoma.

J Mater Chem B. 2022-4-13

[6]
Merging metal organic framework with hollow organosilica nanoparticles as a versatile nanoplatform for cancer theranostics.

Acta Biomater. 2019-1-6

[7]
A Multifunctional, Highly Biocompatible, and Double-Triggering Caramelized Nanotheranostic System Loaded with FeO and DOX for Combined Chemo-Photothermal Therapy and Real-Time Magnetic Resonance Imaging Monitoring of Triple Negative Breast Cancer.

Int J Nanomedicine. 2023

[8]
Near-infrared light triggered drug delivery system for higher efficacy of combined chemo-photothermal treatment.

Acta Biomater. 2017-3-15

[9]
Periodic mesoporous organosilica-coated magnetite nanoparticles combined with lipiodol for transcatheter arterial chemoembolization to inhibit the progression of liver cancer.

J Colloid Interface Sci. 2021-6

[10]
Combinatorial Polydopamine-Liposome Nanoformulation as an Effective Anti-Breast Cancer Therapy.

Int J Nanomedicine. 2023

引用本文的文献

[1]
Engineered nanoparticles for imaging and targeted drug delivery in hepatocellular carcinoma.

Exp Hematol Oncol. 2025-4-30

[2]
Sorafenib-Drug Delivery Strategies in Primary Liver Cancer.

J Funct Biomater. 2025-4-21

[3]
Application of nanotechnology in the treatment of hepatocellular carcinoma.

Front Pharmacol. 2024-11-29

本文引用的文献

[1]
Multifunctional AIE Nanosphere-Based "Nanobomb" for Trimodal Imaging-Guided Photothermal/Photodynamic/Pharmacological Therapy of Drug-Resistant Bacterial Infections.

ACS Nano. 2023-3-14

[2]
BSA-templated synthesis of Ir/Gd bimetallic oxide nanotheranostics for MR/CT imaging-guided photothermal and photodynamic synergistic therapy.

Nanoscale. 2023-3-2

[3]
Novel Self-Assembled Multifunctional Nanoprobes for Second-Near-Infrared-Fluorescence-Image-Guided Breast Cancer Surgery and Enhanced Radiotherapy Efficacy.

Adv Sci (Weinh). 2023-4

[4]
J-Aggregates Formed by NaCl Treatment of Aza-Coating Heptamethine Cyanines and Their Application to Monitoring Salt Stress of Plants and Promoting Photothermal Therapy of Tumors.

Angew Chem Int Ed Engl. 2023-1-16

[5]
Sorafenib-Loaded CuSe Nanoparticles Boost Photothermal-Synergistic Targeted Therapy against Hepatocellular Carcinoma.

Nanomaterials (Basel). 2022-9-14

[6]
Isoliquiritigenin Inhibits Gastric Cancer Stemness, Modulates Tumor Microenvironment, and Suppresses Tumor Growth through Glucose-Regulated Protein 78 Downregulation.

Biomedicines. 2022-6-8

[7]
Tumor-microenvironment triggered signal-to-noise boosting nanoprobes for NIR-IIb fluorescence imaging guided tumor surgery and NIR-II photothermal therapy.

Biomaterials. 2022-8

[8]
Sensitive and specific detection of breast cancer lymph node metastasis through dual-modality magnetic particle imaging and fluorescence molecular imaging: a preclinical evaluation.

Eur J Nucl Med Mol Imaging. 2022-7

[9]
Biodegradable Nanoprobe for NIR-II Fluorescence Image-Guided Surgery and Enhanced Breast Cancer Radiotherapy Efficacy.

Adv Sci (Weinh). 2022-4

[10]
A Critical YAP in Malignancy of HCC Is Regulated by Evodiamine.

Int J Mol Sci. 2022-2-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索