Suppr超能文献

自我评估嗅觉能力可实现对新冠病毒感染状态的高度特异性预测:以色列的一项病例对照研究。

Self-Rated Smell Ability Enables Highly Specific Predictors of COVID-19 Status: A Case-Control Study in Israel.

作者信息

Karni Noam, Klein Hadar, Asseo Kim, Benjamini Yuval, Israel Sarah, Nammary Musa, Olshtain-Pops Keren, Nir-Paz Ran, Hershko Alon, Muszkat Mordechai, Niv Masha Y

机构信息

Department of Medicine, Hadassah University Hospital, Mt. Scopus Campus, Jerusalem, Israel.

Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.

出版信息

Open Forum Infect Dis. 2020 Dec 28;8(2):ofaa589. doi: 10.1093/ofid/ofaa589. eCollection 2021 Feb.

Abstract

BACKGROUND

Clinical diagnosis of coronavirus disease 2019 (COVID-19) is essential to the detection and prevention of COVID-19. Sudden onset of loss of taste and smell is a hallmark of COVID-19, and optimal ways for including these symptoms in the screening of patients and distinguishing COVID-19 from other acute viral diseases should be established.

METHODS

We performed a case-control study of patients who were polymerase chain reaction-tested for COVID-19 (112 positive and 112 negative participants), recruited during the first wave (March 2020-May 2020) of the COVID-19 pandemic in Israel. Patients reported their symptoms and medical history by phone and rated their olfactory and gustatory abilities before and during their illness on a 1-10 scale.

RESULTS

Changes in smell and taste occurred in 68% (95% CI, 60%-76%) and 72% (95% CI, 64%-80%) of positive patients, with odds ratios of 24 (range, 11-53) and 12 (range, 6-23), respectively. The ability to smell was decreased by 0.5 ± 1.5 in negatives and by 4.5 ± 3.6 in positives. A penalized logistic regression classifier based on 5 symptoms had 66% sensitivity, 97% specificity, and an area under the receiver operating characteristics curve (AUC) of 0.83 on a holdout set. A classifier based on degree of smell change was almost as good, with 66% sensitivity, 97% specificity, and 0.81 AUC. The predictive positive value of this classifier was 0.68, and the negative predictive value was 0.97.

CONCLUSIONS

Self-reported quantitative olfactory changes, either alone or combined with other symptoms, provide a specific tool for clinical diagnosis of COVID-19. A simple calculator for prioritizing COVID-19 laboratory testing is presented here.

摘要

背景

2019冠状病毒病(COVID-19)的临床诊断对于COVID-19的检测和预防至关重要。味觉和嗅觉突然丧失是COVID-19的一个标志,应建立将这些症状纳入患者筛查以及将COVID-19与其他急性病毒性疾病区分开来的最佳方法。

方法

我们对在以色列COVID-19大流行第一波(2020年3月至2020年5月)期间接受COVID-19聚合酶链反应检测的患者进行了病例对照研究(112名阳性和112名阴性参与者)。患者通过电话报告他们的症状和病史,并在患病前和患病期间用1至10分的量表对他们的嗅觉和味觉能力进行评分。

结果

68%(95%置信区间,60%-76%)的阳性患者出现嗅觉变化,72%(95%置信区间,64%-80%)的阳性患者出现味觉变化,优势比分别为24(范围,11-53)和12(范围,6-23)。阴性患者的嗅觉能力下降0.5±1.5,阳性患者下降4.5±3.6。基于5种症状的惩罚逻辑回归分类器在保留集上的灵敏度为66%,特异性为97%,受试者工作特征曲线下面积(AUC)为0.83。基于嗅觉变化程度的分类器几乎同样出色,灵敏度为66%,特异性为97%,AUC为0.81。该分类器的预测阳性值为0.68,阴性预测值为0.97。

结论

自我报告的定量嗅觉变化,单独或与其他症状结合,为COVID-19的临床诊断提供了一种特异性工具。本文提供了一个用于确定COVID-19实验室检测优先级的简单计算器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ce/7881756/c9a5dbeb90a6/ofaa589_iffig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验