Suppr超能文献

通过多模块代谢工程提高解脂耶氏酵母中白桦脂酸和相关三萜类化合物的生物合成。

Boosting the biosynthesis of betulinic acid and related triterpenoids in Yarrowia lipolytica via multimodular metabolic engineering.

机构信息

Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.

Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.

出版信息

Microb Cell Fact. 2019 May 3;18(1):77. doi: 10.1186/s12934-019-1127-8.

Abstract

BACKGROUND

Betulinic acid is a pentacyclic lupane-type triterpenoid and a potential antiviral and antitumor drug, but the amount of betulinic acid in plants is low and cannot meet the demand for this compound. Yarrowia lipolytica, as an oleaginous yeast, is a promising microbial cell factory for the production of highly hydrophobic compounds due to the ability of this organism to accumulate large amounts of lipids that can store hydrophobic products and supply sufficient precursors for terpene synthesis. However, engineering for the heterologous production of betulinic acid and related triterpenoids has not developed as systematically as that for the production of other terpenoids, thus the production of betulinic acid in microbes remains unsatisfactory.

RESULTS

In this study, we applied a multimodular strategy to systematically improve the biosynthesis of betulinic acid and related triterpenoids in Y. lipolytica by engineering four functional modules, namely, the heterogenous CYP/CPR, MVA, acetyl-CoA generation, and redox cofactor supply modules. First, by screening 25 combinations of cytochrome P450 monooxygenases (CYPs) and NADPH-cytochrome P450 reductases (CPRs), each of which originated from 5 different sources, we selected two optimal betulinic acid-producing strains. Then, ERG1, ERG9, and HMG1 in the MVA module were overexpressed in the two strains, which dramatically increased betulinic acid production and resulted in a strain (YLJCC56) that exhibited the highest betulinic acid yield of 51.87 ± 2.77 mg/L. Then, we engineered the redox cofactor supply module by introducing NADPH- or NADH-generating enzymes and the acetyl-CoA generation module by directly overexpressing acetyl-CoA synthases or reinforcing the β-oxidation pathway, which further increased the total triterpenoid yield (the sum of the betulin, betulinic acid, betulinic aldehyde yields). Finally, we engineered these modules in combination, and the total triterpenoid yield reached 204.89 ± 11.56 mg/L (composed of 65.44% betulin, 23.71% betulinic acid and 10.85% betulinic aldehyde) in shake flask cultures.

CONCLUSIONS

Here, we systematically engineered Y. lipolytica and achieved, to the best of our knowledge, the highest betulinic acid and total triterpenoid yields reported in microbes. Our study provides a suitable reference for studies on heterologous exploitation of P450 enzymes and manipulation of triterpenoid production in Y. lipolytica.

摘要

背景

白桦脂酸是一种五环三萜类化合物,具有抗病毒和抗肿瘤的潜力,但植物中白桦脂酸的含量较低,无法满足对该化合物的需求。假丝酵母脂肪酶作为一种油脂酵母,由于其能够积累大量的油脂,这些油脂可以储存疏水性产物并为萜烯合成提供足够的前体,因此是生产高度疏水性化合物的有前途的微生物细胞工厂。然而,与其他萜类化合物的生产相比,白桦脂酸和相关三萜类化合物的异源生产工程尚未得到系统发展,因此微生物中白桦脂酸的生产仍不尽如人意。

结果

在本研究中,我们通过工程化四个功能模块,即异源 CYP/CPR、MVA、乙酰辅酶 A 生成和氧化还原辅因子供应模块,应用多模块策略系统地提高了假丝酵母脂肪酶中白桦脂酸和相关三萜类化合物的生物合成。首先,通过筛选来自 5 个不同来源的 25 种细胞色素 P450 单加氧酶 (CYPs) 和 NADPH-细胞色素 P450 还原酶 (CPRs) 的组合,我们选择了两种最佳的白桦脂酸生产菌株。然后,在这两种菌株中过表达 MVA 模块中的 ERG1、ERG9 和 HMG1,这极大地提高了白桦脂酸的产量,使一株(YLJCC56)的白桦脂酸产量达到 51.87±2.77mg/L。然后,我们通过引入 NADPH 或 NADH 生成酶来工程化氧化还原辅因子供应模块,并通过直接过表达乙酰辅酶 A 合酶或强化β-氧化途径来工程化乙酰辅酶 A 生成模块,这进一步提高了总三萜类化合物的产量(白桦脂、白桦脂酸和白桦脂醛的产量总和)。最后,我们将这些模块进行组合工程化,在摇瓶培养中,总三萜类化合物的产量达到 204.89±11.56mg/L(由 65.44%的白桦脂、23.71%的白桦脂酸和 10.85%的白桦脂醛组成)。

结论

在这里,我们系统地工程化了假丝酵母脂肪酶,并获得了迄今为止微生物中报道的最高白桦脂酸和总三萜类化合物产量。我们的研究为 P450 酶的异源利用以及假丝酵母脂肪酶中三萜类化合物生产的操纵提供了合适的参考。

相似文献

2
Biotechnological production of betulinic acid and derivatives and their applications.
Appl Microbiol Biotechnol. 2020 Apr;104(8):3339-3348. doi: 10.1007/s00253-020-10495-1. Epub 2020 Feb 28.
4
A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica.
Microb Cell Fact. 2020 Feb 27;19(1):49. doi: 10.1186/s12934-020-01309-0.
5
Production of Triterpene Ginsenoside Compound K in the Non-conventional Yeast Yarrowia lipolytica.
J Agric Food Chem. 2019 Mar 6;67(9):2581-2588. doi: 10.1021/acs.jafc.9b00009. Epub 2019 Feb 22.
8
Metabolic engineering of Yarrowia lipolytica for high-level production of squalene.
Bioresour Technol. 2024 Feb;394:130233. doi: 10.1016/j.biortech.2023.130233. Epub 2023 Dec 22.
9
Advanced Strategies for the Synthesis of Terpenoids in .
J Agric Food Chem. 2021 Mar 3;69(8):2367-2381. doi: 10.1021/acs.jafc.1c00350. Epub 2021 Feb 17.
10
Increase of betulinic acid production in Saccharomyces cerevisiae by balancing fatty acids and betulinic acid forming pathways.
Appl Microbiol Biotechnol. 2014 Apr;98(7):3081-9. doi: 10.1007/s00253-013-5461-1. Epub 2014 Jan 5.

引用本文的文献

1
as a promising cell factory for microbial production of value-added nutraceuticals.
Front Bioeng Biotechnol. 2025 Aug 28;13:1673169. doi: 10.3389/fbioe.2025.1673169. eCollection 2025.
3
Untargeted metabolomics of volatiles: Implications in pathway enrichments for improved bioactivities.
Heliyon. 2025 Jan 25;11(3):e42268. doi: 10.1016/j.heliyon.2025.e42268. eCollection 2025 Feb 15.
4
Advancements in Betulinic Acid-Loaded Nanoformulations for Enhanced Anti-Tumor Therapy.
Int J Nanomedicine. 2024 Dec 29;19:14075-14103. doi: 10.2147/IJN.S493489. eCollection 2024.
5
Functional expression and regulation of eukaryotic cytochrome P450 enzymes in surrogate microbial cell factories.
Eng Microbiol. 2022 Jan 19;2(1):100011. doi: 10.1016/j.engmic.2022.100011. eCollection 2022 Mar.
6
Progress in the Metabolic Engineering of for the Synthesis of Terpenes.
Biodes Res. 2024 Nov 12;6:0051. doi: 10.34133/bdr.0051. eCollection 2024.
9
Two-Phase Fermentation Systems for Microbial Production of Plant-Derived Terpenes.
Molecules. 2024 Mar 2;29(5):1127. doi: 10.3390/molecules29051127.
10
Improved antioxidant activities of spice require enrichment of distinct yet closely-related metabolic pathways.
Heliyon. 2023 Oct 21;9(11):e21392. doi: 10.1016/j.heliyon.2023.e21392. eCollection 2023 Nov.

本文引用的文献

1
Comparative analysis of CYP716A subfamily enzymes for the heterologous production of C-28 oxidized triterpenoids in transgenic yeast.
Plant Biotechnol (Tokyo). 2018 Jun 25;35(2):131-139. doi: 10.5511/plantbiotechnology.18.0416a.
2
Advances in the metabolic engineering of Yarrowia lipolytica for the production of terpenoids.
Bioresour Technol. 2019 Jun;281:449-456. doi: 10.1016/j.biortech.2019.02.116. Epub 2019 Feb 27.
3
Metabolic engineering in the host Yarrowia lipolytica.
Metab Eng. 2018 Nov;50:192-208. doi: 10.1016/j.ymben.2018.07.016. Epub 2018 Jul 26.
4
Metabolic engineering of for 7-dehydrocholesterol overproduction.
Biotechnol Biofuels. 2018 Jul 16;11:192. doi: 10.1186/s13068-018-1194-9. eCollection 2018.
5
Enhanced squalene biosynthesis in Yarrowia lipolytica based on metabolically engineered acetyl-CoA metabolism.
J Biotechnol. 2018 Sep 10;281:106-114. doi: 10.1016/j.jbiotec.2018.07.001. Epub 2018 Jul 2.
6
Engineering global transcription to tune lipophilic properties in .
Biotechnol Biofuels. 2018 Apr 19;11:115. doi: 10.1186/s13068-018-1114-z. eCollection 2018.
7
Gene repression via multiplex gRNA strategy in Y. lipolytica.
Microb Cell Fact. 2018 Apr 20;17(1):62. doi: 10.1186/s12934-018-0909-8.
8
Engineering of for production of astaxanthin.
Synth Syst Biotechnol. 2017 Oct 20;2(4):287-294. doi: 10.1016/j.synbio.2017.10.002. eCollection 2017 Dec.
9
New Pharmacological Opportunities for Betulinic Acid.
Planta Med. 2018 Jan;84(1):8-19. doi: 10.1055/s-0043-123472. Epub 2017 Dec 4.
10
Synbiological systems for complex natural products biosynthesis.
Synth Syst Biotechnol. 2016 Oct 31;1(4):221-229. doi: 10.1016/j.synbio.2016.08.002. eCollection 2016 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验