Calderini Matias, Thivierge Jean-Philippe
School of Psychology, University of Ottawa, 136 Jean Jacques Lussier, Ottawa, ON, K1N 6N5, Canada.
Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
J Math Neurosci. 2021 Feb 19;11(1):6. doi: 10.1186/s13408-021-00104-4.
Decoding approaches provide a useful means of estimating the information contained in neuronal circuits. In this work, we analyze the expected classification error of a decoder based on Fisher linear discriminant analysis. We provide expressions that relate decoding error to the specific parameters of a population model that performs linear integration of sensory input. Results show conditions that lead to beneficial and detrimental effects of noise correlation on decoding. Further, the proposed framework sheds light on the contribution of neuronal noise, highlighting cases where, counter-intuitively, increased noise may lead to improved decoding performance. Finally, we examined the impact of dynamical parameters, including neuronal leak and integration time constant, on decoding. Overall, this work presents a fruitful approach to the study of decoding using a comprehensive theoretical framework that merges dynamical parameters with estimates of readout error.
解码方法为估计神经回路中包含的信息提供了一种有用的手段。在这项工作中,我们基于Fisher线性判别分析来分析解码器的预期分类误差。我们给出了将解码误差与执行感觉输入线性整合的群体模型的特定参数相关联的表达式。结果显示了噪声相关性对解码产生有益和有害影响的条件。此外,所提出的框架揭示了神经元噪声的作用,突出了一些反直觉的情况,即增加噪声可能会导致解码性能的提高。最后,我们研究了包括神经元漏电和整合时间常数在内的动态参数对解码的影响。总的来说,这项工作提出了一种富有成效的方法,用于使用一个将动态参数与读出误差估计相结合的综合理论框架来研究解码。