Moreno-Bote Rubén, Beck Jeffrey, Kanitscheider Ingmar, Pitkow Xaq, Latham Peter, Pouget Alexandre
1] Research Unit, Parc Sanitari Sant Joan de Déu and Universitat de Barcelona, Esplugues de Llobregat, Barcelona, Spain. [2] Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Esplugues de Llobregat, Barcelona, Spain.
Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York, USA.
Nat Neurosci. 2014 Oct;17(10):1410-7. doi: 10.1038/nn.3807. Epub 2014 Sep 7.
Computational strategies used by the brain strongly depend on the amount of information that can be stored in population activity, which in turn strongly depends on the pattern of noise correlations. In vivo, noise correlations tend to be positive and proportional to the similarity in tuning properties. Such correlations are thought to limit information, which has led to the suggestion that decorrelation increases information. In contrast, we found, analytically and numerically, that decorrelation does not imply an increase in information. Instead, the only information-limiting correlations are what we refer to as differential correlations: correlations proportional to the product of the derivatives of the tuning curves. Unfortunately, differential correlations are likely to be very small and buried under correlations that do not limit information, making them particularly difficult to detect. We found, however, that the effect of differential correlations on information can be detected with relatively simple decoders.
大脑所使用的计算策略在很大程度上取决于能够存储在群体活动中的信息量,而这又反过来在很大程度上取决于噪声相关性的模式。在活体中,噪声相关性往往呈正相关,并且与调谐特性的相似性成正比。这种相关性被认为会限制信息,这就导致了这样一种观点,即去相关会增加信息。相比之下,我们通过分析和数值计算发现,去相关并不意味着信息增加。相反,唯一限制信息的相关性是我们所说的微分相关性:与调谐曲线导数乘积成正比的相关性。不幸的是,微分相关性可能非常小,并且被不限制信息的相关性所掩盖,这使得它们特别难以检测。然而,我们发现,通过相对简单的解码器就可以检测到微分相关性对信息的影响。