Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Department of Cellular Biology, University of Georgia, Athens, GA, USA.
Dev Biol. 2021 May;473:130-143. doi: 10.1016/j.ydbio.2021.02.004. Epub 2021 Feb 16.
Chromatin modifications function as critical regulators of gene expression and cellular identity, especially in the regulation and maintenance of the pluripotent state. However, many studies of chromatin modification in stem cells-and pluripotent stem cells in particular-are performed in mammalian stem cell culture, an in vitro condition mimicking a very transient state during mammalian development. Thus, new models for studying pluripotent stem cells in vivo could be helpful for understanding the roles of chromatin modification, for confirming prior in vitro studies, and for exploring evolution of the pluripotent state. The freshwater flatworm, Schmidtea mediterranea, is an excellent model for studying adult pluripotent stem cells, particularly in the context of robust, whole-body regeneration. To identify chromatin modifying and remodeling enzymes critical for planarian regeneration and stem cell maintenance, we took a candidate approach and screened planarian homologs of 25 genes known to regulate chromatin biology in other organisms. Through our study, we identified six genes with novel functions in planarian homeostasis, regeneration, and behavior. Of the list of genes characterized, we identified five planarian homologs of the mammalian CREB-Binding Protein (CBP) and p300 family of histone acetyltransferases, representing an expansion of this family in planarians. We find that two planarian CBP family members are required for planarian survival, with knockdown of Smed-CBP2 and Smed-CBP3 causing distinct defects in stem cell maintenance or function. Loss of CBP2 causes a quick, dramatic loss of stem cells, while knockdown of CBP3 affects stem cells more narrowly, influencing differentiation of several cell types that include neuronal subtypes and cells of the eye. Further, we find that Smed-CBP1 is required for planarian fissioning behavior. We propose that the division of labor among a diversified CBP family in planarians presents an opportunity to dissect specific functions of a broadly important histone acetyltransferase family.
染色质修饰作为基因表达和细胞身份的关键调控因子起作用,特别是在多能状态的调控和维持中。然而,许多关于干细胞中的染色质修饰的研究,特别是多能干细胞的研究,都是在哺乳动物干细胞培养中进行的,这是一种体外条件,模拟了哺乳动物发育过程中非常短暂的状态。因此,研究体内多能干细胞的新模型可能有助于理解染色质修饰的作用,验证之前的体外研究,并探索多能状态的演化。淡水扁虫,Schmidtea mediterranea,是研究成年多能干细胞的极佳模型,特别是在强大的整体再生背景下。为了鉴定对扁虫再生和干细胞维持至关重要的染色质修饰和重塑酶,我们采用了候选方法,筛选了 25 种已知在其他生物中调节染色质生物学的基因的扁虫同源物。通过我们的研究,我们鉴定了 6 种在扁虫体内平衡、再生和行为中具有新功能的基因。在所研究的基因中,我们鉴定了哺乳动物 CREB 结合蛋白(CBP)和 p300 家族组蛋白乙酰转移酶的 5 种扁虫同源物,这代表了该家族在扁虫中的扩展。我们发现两种扁虫 CBP 家族成员是扁虫生存所必需的,敲低 Smed-CBP2 和 Smed-CBP3 导致干细胞维持或功能的明显缺陷。CBP2 的缺失会迅速导致干细胞的大量丢失,而 CBP3 的敲低则更局限地影响几种细胞类型的分化,包括神经元亚型和眼睛细胞。此外,我们发现 Smed-CBP1 是扁虫分裂行为所必需的。我们提出,在扁虫中多样化的 CBP 家族的分工提供了一个机会,可以剖析广泛重要的组蛋白乙酰转移酶家族的特定功能。