McIntire F C, Crosby L K, Vatter A E, Cisar J O, McNeil M R, Bush C A, Tjoa S S, Fennessey P V
Department of Diagnostic and Biological Sciences, School of Dentistry, University of Colorado Health Sciences Center, Denver 80262.
J Bacteriol. 1988 May;170(5):2229-35. doi: 10.1128/jb.170.5.2229-2235.1988.
Coaggregation between Actinomyces viscosus T14V and Streptococcus sanguis 34 depends on interaction of a lectin on A. viscosus T14V with a cell surface carbohydrate on S. sanguis 34. This carbohydrate was isolated, and its chemical makeup was established. The carbohydrate remained attached to S. sanguis 34 cells through extraction with Triton X-100 and treatment with pronase. It was cleaved from the cell residue by autoclaving and purified by differential centrifugation and column chromatography on DEAE-Sephacel and Sephadex G-75. The polysaccharide contained phosphate which was neither inorganic nor monoester. Treatment with NaOH-NaBH4, followed by Escherichia coli alkaline phosphatase, or with 48% HF at 4 degrees C, followed by NaBH4, yielded inorganic phosphate and oligosaccharide alditols. Therefore, the polysaccharide is composed of oligosaccharide units joined together by phosphodiester bridges. The structure and stereochemistry of the main oligosaccharide alditol was established previously (F. C. McIntire, C. A. Bush, S.-S. Wu, S.-C. Li, Y.-T. Li, M. McNeil, S. Tjoa, and P. V. Fennessey, Carbohydr. Res. 166:133-143). Permethylation analysis, 1H and 31P nuclear magnetic resonance studies on the whole polysaccharide revealed the position of the phosphodiester linkages. The polysaccharide is mainly a polymer of (6) GalNAc(alpha 1-3)Rha(beta 1-4)Glc(beta 1-6)Galf(beta 1-6)GalNAc(beta 1- 3)Gal(alpha 1)-OPO3. It reacted as a single antigen with antiserum to S. sanguis 34 cells and was a potent inhibitor of coaggregation between A. viscosus T14V and S. sanguis 34. Quantitative inhibition of precipitation assays with oligosaccharides, O-allyl N-acetylgalactosaminides, and simple sugars indicated that specific antibodies were directed to the GalNAc end of the hexasaccharide unit. In contrast, coaggregation was inhibited much more effectively by saccharides containing betaGalNAc. Thus, the specificity of the A. viscosus T14V lectin is strikingly different from that of antibodies directed against the S. sanguis 34 polysaccharide.
黏性放线菌T14V与血链球菌34之间的共聚作用取决于黏性放线菌T14V上的一种凝集素与血链球菌34细胞表面碳水化合物之间的相互作用。这种碳水化合物被分离出来,并确定了其化学组成。通过用Triton X-100提取和用链霉蛋白酶处理,这种碳水化合物仍附着在血链球菌34细胞上。通过高压灭菌将其从细胞残渣上裂解下来,然后通过差速离心以及在DEAE-葡聚糖凝胶和葡聚糖凝胶G-75上进行柱色谱法进行纯化。该多糖含有既不是无机磷也不是单酯磷的磷酸盐。用NaOH-NaBH4处理,随后用大肠杆菌碱性磷酸酶处理,或者在4℃下用48%的HF处理,随后用NaBH4处理,产生无机磷酸盐和低聚糖糖醇。因此,该多糖由通过磷酸二酯桥连接在一起的低聚糖单元组成。主要低聚糖糖醇的结构和立体化学先前已确定(F.C.麦金太尔、C.A.布什、S.-S.吴、S.-C.李、Y.-T.李、M.麦克尼尔、S.乔阿和P.V.芬内西,《碳水化合物研究》166:133-143)。对整个多糖进行的全甲基化分析、1H和31P核磁共振研究揭示了磷酸二酯键的位置。该多糖主要是(6)GalNAc(α1-3)Rha(β1-4)Glc(β1-6)Galf(β1-6)GalNAc(β1-3)Gal(α1)-OPO3的聚合物。它与抗血链球菌34细胞的抗血清反应表现为单一抗原,并且是黏性放线菌T14V与血链球菌34之间共聚作用的有效抑制剂。用低聚糖、O-烯丙基N-乙酰半乳糖胺和单糖进行沉淀试验的定量抑制表明,特异性抗体针对六糖单元的GalNAc末端。相比之下,含有βGalNAc的糖类对共聚作用的抑制更有效。因此,黏性放线菌T14V凝集素的特异性与针对血链球菌34多糖的抗体的特异性明显不同。