Section of Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
Sci Rep. 2021 Feb 19;11(1):4233. doi: 10.1038/s41598-021-82418-7.
Correctly estimating the hormone receptor status for estrogen (ER) and progesterone (PGR) is crucial for precision therapy of breast cancer. It is known that conventional diagnostics (immunohistochemistry, IHC) yields a significant rate of wrongly diagnosed receptor status. Here we demonstrate how Dempster Shafer decision Theory (DST) enhances diagnostic precision by adding information from gene expression. We downloaded data of 3753 breast cancer patients from Gene Expression Omnibus. Information from IHC and gene expression was fused according to DST, and the clinical criterion for receptor positivity was re-modelled along DST. Receptor status predicted according to DST was compared with conventional assessment via IHC and gene-expression, and deviations were flagged as questionable. The survival of questionable cases turned out significantly worse (Kaplan Meier p < 1%) than for patients with receptor status confirmed by DST, indicating a substantial enhancement of diagnostic precision via DST. This study is not only relevant for precision medicine but also paves the way for introducing decision theory into OMICS data science.
正确评估乳腺癌的雌激素(ER)和孕激素(PGR)受体状态对于精准治疗至关重要。众所周知,传统的诊断方法(免疫组织化学,IHC)会导致受体状态的诊断错误率显著升高。在这里,我们展示了 Dempster Shafer 决策理论(DST)如何通过添加基因表达信息来提高诊断精度。我们从基因表达综合数据库(Gene Expression Omnibus)下载了 3753 名乳腺癌患者的数据。根据 DST 融合 IHC 和基因表达信息,并根据 DST 重新构建受体阳性的临床标准。根据 DST 预测的受体状态与通过 IHC 和基因表达进行的常规评估进行比较,并将偏差标记为可疑。可疑病例的生存情况明显较差(Kaplan-Meier p < 0.01%),这表明通过 DST 显著提高了诊断精度。这项研究不仅与精准医学相关,而且为将决策理论引入 OMICS 数据科学铺平了道路。
Sci Rep. 2021-2-19
Breast Cancer Res Treat. 2018-8-16
BMC Med Genomics. 2012-10-4
J Pers Med. 2023-1-5
Biomed Res Int. 2020
Breast Cancer Res Treat. 2018-8-16
NPJ Breast Cancer. 2016-6-8
Lancet. 2016-11-17