文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

决策理论在乳腺癌精准治疗中的应用。

Decision theory for precision therapy of breast cancer.

机构信息

Section of Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.

Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.

出版信息

Sci Rep. 2021 Feb 19;11(1):4233. doi: 10.1038/s41598-021-82418-7.


DOI:10.1038/s41598-021-82418-7
PMID:33608588
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7895957/
Abstract

Correctly estimating the hormone receptor status for estrogen (ER) and progesterone (PGR) is crucial for precision therapy of breast cancer. It is known that conventional diagnostics (immunohistochemistry, IHC) yields a significant rate of wrongly diagnosed receptor status. Here we demonstrate how Dempster Shafer decision Theory (DST) enhances diagnostic precision by adding information from gene expression. We downloaded data of 3753 breast cancer patients from Gene Expression Omnibus. Information from IHC and gene expression was fused according to DST, and the clinical criterion for receptor positivity was re-modelled along DST. Receptor status predicted according to DST was compared with conventional assessment via IHC and gene-expression, and deviations were flagged as questionable. The survival of questionable cases turned out significantly worse (Kaplan Meier p < 1%) than for patients with receptor status confirmed by DST, indicating a substantial enhancement of diagnostic precision via DST. This study is not only relevant for precision medicine but also paves the way for introducing decision theory into OMICS data science.

摘要

正确评估乳腺癌的雌激素(ER)和孕激素(PGR)受体状态对于精准治疗至关重要。众所周知,传统的诊断方法(免疫组织化学,IHC)会导致受体状态的诊断错误率显著升高。在这里,我们展示了 Dempster Shafer 决策理论(DST)如何通过添加基因表达信息来提高诊断精度。我们从基因表达综合数据库(Gene Expression Omnibus)下载了 3753 名乳腺癌患者的数据。根据 DST 融合 IHC 和基因表达信息,并根据 DST 重新构建受体阳性的临床标准。根据 DST 预测的受体状态与通过 IHC 和基因表达进行的常规评估进行比较,并将偏差标记为可疑。可疑病例的生存情况明显较差(Kaplan-Meier p < 0.01%),这表明通过 DST 显著提高了诊断精度。这项研究不仅与精准医学相关,而且为将决策理论引入 OMICS 数据科学铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/7895957/e41f7901838e/41598_2021_82418_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/7895957/5f3b1f6d6de0/41598_2021_82418_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/7895957/e196cb631064/41598_2021_82418_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/7895957/a917700e1f34/41598_2021_82418_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/7895957/e19cbdafc2f9/41598_2021_82418_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/7895957/eca0e531e4c3/41598_2021_82418_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/7895957/01ad5ab08504/41598_2021_82418_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/7895957/0193f3f2f195/41598_2021_82418_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/7895957/a4580bd12b91/41598_2021_82418_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/7895957/e41f7901838e/41598_2021_82418_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/7895957/5f3b1f6d6de0/41598_2021_82418_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/7895957/e196cb631064/41598_2021_82418_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/7895957/a917700e1f34/41598_2021_82418_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/7895957/e19cbdafc2f9/41598_2021_82418_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/7895957/eca0e531e4c3/41598_2021_82418_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/7895957/01ad5ab08504/41598_2021_82418_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/7895957/0193f3f2f195/41598_2021_82418_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/7895957/a4580bd12b91/41598_2021_82418_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db59/7895957/e41f7901838e/41598_2021_82418_Fig9_HTML.jpg

相似文献

[1]
Decision theory for precision therapy of breast cancer.

Sci Rep. 2021-2-19

[2]
Decision Theory versus Conventional Statistics for Personalized Therapy of Breast Cancer.

J Pers Med. 2022-4-2

[3]
Co-expressed genes enhance precision of receptor status identification in breast cancer patients.

Breast Cancer Res Treat. 2018-8-16

[4]
Clinical Characteristics and Outcomes of Single Versus Double Hormone Receptor-Positive Breast Cancer in 2 Large Databases.

Clin Breast Cancer. 2020-4

[5]
Progesterone receptor positivity is a predictor of long-term benefit from adjuvant tamoxifen treatment of estrogen receptor positive breast cancer.

Breast Cancer Res Treat. 2016-11

[6]
Gene expression of estrogen receptor, progesterone receptor and microtubule-associated protein Tau in high-risk early breast cancer: a quest for molecular predictors of treatment benefit in the context of a Hellenic Cooperative Oncology Group trial.

Breast Cancer Res Treat. 2009-7

[7]
PAM50 breast cancer subtyping by RT-qPCR and concordance with standard clinical molecular markers.

BMC Med Genomics. 2012-10-4

[8]
High Ki-67 Expression and Low Progesterone Receptor Expression Could Independently Lead to a Worse Prognosis for Postmenopausal Patients With Estrogen Receptor-Positive and HER2-Negative Breast Cancer.

Clin Breast Cancer. 2015-6

[9]
Concordance of breast cancer biomarker status between routine immunohistochemistry/in situ hybridization and Oncotype DX qRT-PCR with investigation of discordance, a study of 591 cases.

Hum Pathol. 2020-10

[10]
Improved Risk Stratification for Breast Cancer Samples Based on the Expression Ratio of the Estrogen and Progesterone Receptor.

Anticancer Res. 2016-8

引用本文的文献

[1]
A war on many fronts: cross disciplinary approaches for novel cancer treatment strategies.

Front Genet. 2024-5-30

[2]
Flexible Risk Evidence Combination Rules in Breast Cancer Precision Therapy.

J Pers Med. 2023-1-5

[3]
Decision Theory versus Conventional Statistics for Personalized Therapy of Breast Cancer.

J Pers Med. 2022-4-2

[4]
Gene network profiling in muscle-invasive bladder cancer: A systematic review and meta-analysis.

Urol Oncol. 2022-5

本文引用的文献

[1]
Microarray Normalization Revisited for Reproducible Breast Cancer Biomarkers.

Biomed Res Int. 2020

[2]
Co-expressed genes enhance precision of receptor status identification in breast cancer patients.

Breast Cancer Res Treat. 2018-8-16

[3]
Gene expression information improves reliability of receptor status in breast cancer patients.

Oncotarget. 2017-8-24

[4]
Learning from big data: are we undertreating older women with high-risk breast cancer?

NPJ Breast Cancer. 2016-6-8

[5]
PAM50 gene signatures and breast cancer prognosis with adjuvant anthracycline- and taxane-based chemotherapy: correlative analysis of C9741 (Alliance).

NPJ Breast Cancer. 2016

[6]
Pathological Complete Response to Neoadjuvant Trastuzumab Is Dependent on HER2/CEP17 Ratio in HER2-Amplified Early Breast Cancer.

Clin Cancer Res. 2017-1-31

[7]
Breast cancer.

Lancet. 2016-11-17

[8]
Low Concordance between Gene Expression Signatures in ER Positive HER2 Negative Breast Carcinoma Could Impair Their Clinical Application.

PLoS One. 2016-2-19

[9]
Use of Biomarkers to Guide Decisions on Adjuvant Systemic Therapy for Women With Early-Stage Invasive Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline.

J Clin Oncol. 2016-4-1

[10]
Genefu: an R/Bioconductor package for computation of gene expression-based signatures in breast cancer.

Bioinformatics. 2016-4-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索