文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于乳腺癌个体化治疗的决策理论与传统统计学

Decision Theory versus Conventional Statistics for Personalized Therapy of Breast Cancer.

作者信息

Kenn Michael, Karch Rudolf, Cacsire Castillo-Tong Dan, Singer Christian F, Koelbl Heinz, Schreiner Wolfgang

机构信息

Section of Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria.

Translational Gynecology Group, Department of Obstetrics and Gynecology Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.

出版信息

J Pers Med. 2022 Apr 2;12(4):570. doi: 10.3390/jpm12040570.


DOI:10.3390/jpm12040570
PMID:35455687
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9028435/
Abstract

Estrogen and progesterone receptors being present or not represents one of the most important biomarkers for therapy selection in breast cancer patients. Conventional measurement by immunohistochemistry (IHC) involves errors, and numerous attempts have been made to increase precision by additional information from gene expression. This raises the question of how to fuse information, in particular, if there is disagreement. It is the primary domain of Dempster-Shafer decision theory (DST) to deal with contradicting evidence on the same item (here: receptor status), obtained through different techniques. DST is widely used in technical settings, such as self-driving cars and aviation, and is also promising to deliver significant advantages in medicine. Using data from breast cancer patients already presented in previous work, we focus on comparing DST with classical statistics in this work, to pave the way for its application in medicine. First, we explain how DST not only considers probabilities (a single number per sample), but also incorporates uncertainty in a concept of 'evidence' (two numbers per sample). This allows for very powerful displays of patient data in so-called ternary plots, a novel and crucial advantage for medical interpretation. Results are obtained according to conventional statistics (ODDS) and, in parallel, according to DST. Agreement and differences are evaluated, and the particular merits of DST discussed. The presented application demonstrates how decision theory introduces new levels of confidence in diagnoses derived from medical data.

摘要

雌激素和孕激素受体的有无是乳腺癌患者治疗方案选择中最重要的生物标志物之一。传统的免疫组织化学(IHC)测量存在误差,人们已进行了大量尝试,通过基因表达的额外信息来提高准确性。这就引发了如何融合信息的问题,尤其是在存在分歧的情况下。处理通过不同技术获得的关于同一项目(此处为受体状态)的相互矛盾证据,是Dempster-Shafer决策理论(DST)的主要领域。DST在自动驾驶汽车和航空等技术领域被广泛应用,在医学领域也有望带来显著优势。利用先前工作中已呈现的乳腺癌患者数据,我们在本研究中专注于将DST与经典统计学进行比较,为其在医学中的应用铺平道路。首先,我们解释DST如何不仅考虑概率(每个样本一个数字),还在“证据”概念中纳入不确定性(每个样本两个数字)。这使得在所谓的三元图中能够非常有效地展示患者数据,这是医学解读的一个新颖且关键的优势。结果根据传统统计学(优势比)得出,同时也根据DST得出。评估一致性和差异,并讨论DST的特殊优点。所展示的应用表明决策理论如何为源自医学数据的诊断引入新的置信水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/d0a69fc766b2/jpm-12-00570-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/7509913c8ca3/jpm-12-00570-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/fc116504c9c7/jpm-12-00570-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/adf52cd72769/jpm-12-00570-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/0eb5a6acdf9c/jpm-12-00570-g0A4a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/a67a3ef41c96/jpm-12-00570-g0A5a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/3b14166b41d4/jpm-12-00570-g0A6a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/f48143d7a9c2/jpm-12-00570-g0A7a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/a1a39ff7f611/jpm-12-00570-g0A8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/699542b24f8c/jpm-12-00570-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/22082507ebcc/jpm-12-00570-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/b440b6977b49/jpm-12-00570-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/fee462a18aa5/jpm-12-00570-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/4fc0e010573d/jpm-12-00570-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/16d39e9fcc71/jpm-12-00570-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/9492910ca7c9/jpm-12-00570-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/d0a69fc766b2/jpm-12-00570-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/7509913c8ca3/jpm-12-00570-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/fc116504c9c7/jpm-12-00570-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/adf52cd72769/jpm-12-00570-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/0eb5a6acdf9c/jpm-12-00570-g0A4a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/a67a3ef41c96/jpm-12-00570-g0A5a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/3b14166b41d4/jpm-12-00570-g0A6a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/f48143d7a9c2/jpm-12-00570-g0A7a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/a1a39ff7f611/jpm-12-00570-g0A8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/699542b24f8c/jpm-12-00570-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/22082507ebcc/jpm-12-00570-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/b440b6977b49/jpm-12-00570-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/fee462a18aa5/jpm-12-00570-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/4fc0e010573d/jpm-12-00570-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/16d39e9fcc71/jpm-12-00570-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/9492910ca7c9/jpm-12-00570-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f6/9028435/d0a69fc766b2/jpm-12-00570-g008.jpg

相似文献

[1]
Decision Theory versus Conventional Statistics for Personalized Therapy of Breast Cancer.

J Pers Med. 2022-4-2

[2]
Decision theory for precision therapy of breast cancer.

Sci Rep. 2021-2-19

[3]
Fusion of FNA-cytology and gene-expression data using Dempster-Shafer Theory of evidence to predict breast cancer tumors.

Bioinformation. 2006-7-19

[4]
Flexible Risk Evidence Combination Rules in Breast Cancer Precision Therapy.

J Pers Med. 2023-1-5

[5]
Co-expressed genes enhance precision of receptor status identification in breast cancer patients.

Breast Cancer Res Treat. 2018-8-16

[6]
An approach to fuzzy soft sets in decision making based on grey relational analysis and Dempster-Shafer theory of evidence: An application in medical diagnosis.

Artif Intell Med. 2015-7

[7]
Efficient Computation of Conditionals in the Dempster-Shafer Belief Theoretic Framework.

IEEE Trans Cybern. 2022-5

[8]
Fusing probability density function into Dempster-Shafer theory of evidence for the evaluation of water treatment plant.

Environ Monit Assess. 2012-9-2

[9]
A novel method to use fuzzy soft sets in decision making based on ambiguity measure and Dempster-Shafer theory of evidence: An application in medical diagnosis.

Artif Intell Med. 2016-5

[10]
Dempster-Shafer Theory for Modeling and Treating Uncertainty in IoT Applications Based on Complex Event Processing.

Sensors (Basel). 2021-3-7

引用本文的文献

[1]
Flexible Risk Evidence Combination Rules in Breast Cancer Precision Therapy.

J Pers Med. 2023-1-5

本文引用的文献

[1]
Decision theory for precision therapy of breast cancer.

Sci Rep. 2021-2-19

[2]
Microarray Normalization Revisited for Reproducible Breast Cancer Biomarkers.

Biomed Res Int. 2020

[3]
Co-expressed genes enhance precision of receptor status identification in breast cancer patients.

Breast Cancer Res Treat. 2018-8-16

[4]
Gene expression information improves reliability of receptor status in breast cancer patients.

Oncotarget. 2017-8-24

[5]
Learning from big data: are we undertreating older women with high-risk breast cancer?

NPJ Breast Cancer. 2016-6-8

[6]
PAM50 gene signatures and breast cancer prognosis with adjuvant anthracycline- and taxane-based chemotherapy: correlative analysis of C9741 (Alliance).

NPJ Breast Cancer. 2016

[7]
Pathological Complete Response to Neoadjuvant Trastuzumab Is Dependent on HER2/CEP17 Ratio in HER2-Amplified Early Breast Cancer.

Clin Cancer Res. 2017-1-31

[8]
Breast cancer.

Lancet. 2016-11-17

[9]
Removing Batch Effects from Longitudinal Gene Expression - Quantile Normalization Plus ComBat as Best Approach for Microarray Transcriptome Data.

PLoS One. 2016-6-7

[10]
Low Concordance between Gene Expression Signatures in ER Positive HER2 Negative Breast Carcinoma Could Impair Their Clinical Application.

PLoS One. 2016-2-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索