文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

雌激素受体阳性、人表皮生长因子受体2阴性乳腺癌中基因表达特征的低一致性可能会损害其临床应用。

Low Concordance between Gene Expression Signatures in ER Positive HER2 Negative Breast Carcinoma Could Impair Their Clinical Application.

作者信息

Laas Enora, Mallon Peter, Duhoux Francois P, Hamidouche Amina, Rouzier Roman, Reyal Fabien

机构信息

Institut Curie, Department of Surgery, Paris, France.

Hopital Tenon, Department of Gynaecologic Surgery, Paris, France.

出版信息

PLoS One. 2016 Feb 19;11(2):e0148957. doi: 10.1371/journal.pone.0148957. eCollection 2016.


DOI:10.1371/journal.pone.0148957
PMID:26895349
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4760978/
Abstract

BACKGROUND: Numerous prognostic gene expression signatures have been recently described. Among the signatures there is variation in the constituent genes that are utilized. We aim to evaluate prognostic concordance among eight gene expression signatures, on a large dataset of ER positive HER2 negative breast cancers. METHODS: We analysed the performance of eight gene expression signatures on six different datasets of ER+ HER2- breast cancers. Survival analyses were performed using the Kaplan-Meier estimate of survival function. We assessed discrimination and concordance between the 8 signatures on survival and recurrence rates The Nottingham Prognostic Index (NPI) was used to to stratify the risk of recurrence/death. RESULTS: The discrimination ability of the whole signatures, showed fair discrimination performances, with AUC ranging from 0.64 (95%CI 0.55-0.73 for the 76-genes signatures, to 0.72 (95%CI 0.64-0.8) for the Molecular Prognosis Index T17. Low concordance was found in predicting events in the intermediate and high-risk group, as defined by the NPI. Low risk group was the only subgroup with a good signatures concordance. CONCLUSION: Genomic signatures may be a good option to predict prognosis as most of them perform well at the population level. They exhibit, however, a high degree of discordance in the intermediate and high-risk groups. The major benefit that we could expect from gene expression signatures is the standardization of proliferation assessment.

摘要

背景:最近已经描述了许多预后基因表达特征。在这些特征中,所使用的组成基因存在差异。我们旨在评估八个基因表达特征在雌激素受体(ER)阳性、人表皮生长因子受体2(HER2)阴性乳腺癌大型数据集上的预后一致性。 方法:我们分析了八个基因表达特征在ER + HER2 - 乳腺癌六个不同数据集上的表现。使用Kaplan - Meier生存函数估计进行生存分析。我们评估了这8个特征在生存率和复发率方面的区分度和一致性。使用诺丁汉预后指数(NPI)对复发/死亡风险进行分层。 结果:整个特征的区分能力显示出中等的区分性能,曲线下面积(AUC)范围从76基因特征的0.64(95%置信区间0.55 - 0.73)到分子预后指数T17的0.72(95%置信区间0.64 - 0.8)。在由NPI定义的中高风险组中预测事件时发现一致性较低。低风险组是唯一具有良好特征一致性的亚组。 结论:基因组特征可能是预测预后的一个好选择,因为它们中的大多数在总体水平上表现良好。然而,它们在中高风险组中表现出高度的不一致性。我们可以从基因表达特征中期待的主要益处是增殖评估的标准化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b988/4760978/f1bf1d8162ae/pone.0148957.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b988/4760978/56aa4af65615/pone.0148957.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b988/4760978/52641964c620/pone.0148957.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b988/4760978/61e9fdd742f3/pone.0148957.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b988/4760978/f1bf1d8162ae/pone.0148957.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b988/4760978/56aa4af65615/pone.0148957.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b988/4760978/52641964c620/pone.0148957.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b988/4760978/61e9fdd742f3/pone.0148957.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b988/4760978/f1bf1d8162ae/pone.0148957.g004.jpg

相似文献

[1]
Low Concordance between Gene Expression Signatures in ER Positive HER2 Negative Breast Carcinoma Could Impair Their Clinical Application.

PLoS One. 2016-2-19

[2]
Cross comparison and prognostic assessment of breast cancer multigene signatures in a large population-based contemporary clinical series.

Sci Rep. 2019-8-21

[3]
Evaluation of public cancer datasets and signatures identifies TP53 mutant signatures with robust prognostic and predictive value.

BMC Cancer. 2015-3-26

[4]
Prognostic Value of a BCSC-associated MicroRNA Signature in Hormone Receptor-Positive HER2-Negative Breast Cancer.

EBioMedicine. 2016-9

[5]
Clinical outcome and global gene expression data support the existence of the estrogen receptor-negative/progesterone receptor-positive invasive breast cancer phenotype.

Breast Cancer Res Treat. 2016-1

[6]
Prognostic contribution of mammographic breast density and HER2 overexpression to the Nottingham Prognostic Index in patients with invasive breast cancer.

BMC Cancer. 2016-11-2

[7]
Concurrent gene signatures for han chinese breast cancers.

PLoS One. 2013-10-3

[8]
Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures.

Breast Cancer Res. 2008

[9]
Poor prognosis of single hormone receptor- positive breast cancer: similar outcome as triple-negative breast cancer.

BMC Cancer. 2015-3-18

[10]
A three-gene model to robustly identify breast cancer molecular subtypes.

J Natl Cancer Inst. 2012-1-18

引用本文的文献

[1]
Decision Theory versus Conventional Statistics for Personalized Therapy of Breast Cancer.

J Pers Med. 2022-4-2

[2]
Decision theory for precision therapy of breast cancer.

Sci Rep. 2021-2-19

[3]
Quadruple Negative Breast Cancers (QNBC) Demonstrate Subtype Consistency among Primary and Recurrent or Metastatic Breast Cancer.

Transl Oncol. 2019-3

[4]
Co-expressed genes enhance precision of receptor status identification in breast cancer patients.

Breast Cancer Res Treat. 2018-8-16

[5]
Gene expression information improves reliability of receptor status in breast cancer patients.

Oncotarget. 2017-8-24

[6]
Extracting replicable associations across multiple studies: Empirical Bayes algorithms for controlling the false discovery rate.

PLoS Comput Biol. 2017-8-18

本文引用的文献

[1]
Predicting and communicating the risk of recurrence and death in women with early-stage breast cancer: a systematic review of risk prediction models.

J Clin Oncol. 2013-12-16

[2]
Clinical validity/utility, change in practice patterns, and economic implications of risk stratifiers to predict outcomes for early-stage breast cancer: a systematic review.

J Natl Cancer Inst. 2012-7-5

[3]
Assessment of the contribution of the IHC4+C score to decision making in clinical practice in early breast cancer.

Br J Cancer. 2012-4-24

[4]
Risk of recurrence and chemotherapy benefit for patients with node-negative, estrogen receptor-positive breast cancer: recurrence score alone and integrated with pathologic and clinical factors.

J Clin Oncol. 2011-10-17

[5]
Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer.

J Clin Oncol. 2011-10-11

[6]
Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group.

J Natl Cancer Inst. 2011-9-29

[7]
Prediction of outcome of early ER+ breast cancer is improved using a biomarker panel, which includes Ki-67 and p53.

Br J Cancer. 2011-6-28

[8]
Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011.

Ann Oncol. 2011-6-27

[9]
Combining gene signatures improves prediction of breast cancer survival.

PLoS One. 2011-3-10

[10]
Intratumor heterogeneity and precision of microarray-based predictors of breast cancer biology and clinical outcome.

J Clin Oncol. 2010-4-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索