Research Group "Sistemas Forestales Mediterráneos", Instituto de Recursos Naturales y Agrobiología de Sevilla. Dpto, Biogeoquímica, Ecología Vegetal y Microbiana, Consejo Superior de Investigaciones Científicas, Av. Reina Mercedes 10, 41012, Sevilla, Spain.
Research Group "Sistemas Naturales e Historia Forestal", ETSI Montes, Forestal y del Medio Natural. Dpto, Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
Heredity (Edinb). 2021 May;126(5):748-762. doi: 10.1038/s41437-021-00415-y. Epub 2021 Feb 19.
The impact of reduced rainfall and increased temperatures forecasted by climate change models on plant communities will depend on the capacity of plant species to acclimate and adapt to new environmental conditions. The acclimation process is mainly driven by epigenetic regulation, including structural and chemical modifications on the genome that do not affect the nucleotide sequence. In plants, one of the best-known epigenetic mechanisms is cytosine-methylation. We evaluated the impact of 30% reduced rainfall (hereafter "drought" treatment; D), 3 °C increased air temperature ("warming"; W), and the combination of D and W (WD) on the phenotypic and epigenetic variability of Hordeum murinum subsp. leporinum L., a grass species of high relevance in Mediterranean agroforestry systems. A full factorial experiment was set up in a savannah-like ecosystem located in southwestern Spain. H. murinum exhibited a large phenotypic plasticity in response to climatic conditions. Plants subjected to warmer conditions (i.e., W and WD treatments) flowered earlier, and those subjected to combined stress (WD) showed a higher investment in leaf area per unit of leaf mass (i.e., higher SLA) and produced heavier seeds. Our results also indicated that both the level and patterns of methylation varied substantially with the climatic treatments, with the combination of D and W inducing a clearly different epigenetic response compared to that promoted by D and W separately. The main conclusion achieved in this work suggests a potential role of epigenetic regulation of gene expression for the maintenance of homoeostasis and functional stability under future climate change scenarios.
气候变化模型预测的降雨量减少和温度升高对植物群落的影响将取决于植物物种适应和适应新环境条件的能力。适应过程主要受表观遗传调控驱动,包括基因组的结构和化学修饰,而不会影响核苷酸序列。在植物中,最著名的表观遗传机制之一是胞嘧啶甲基化。我们评估了降雨量减少 30%(以下简称“干旱”处理;D)、空气温度升高 3°C(“变暖”;W)以及 D 和 W 的组合(WD)对 Hordeum murinum subsp. leporinum L. 表型和表观遗传变异性的影响,这是地中海农林系统中具有重要意义的草种。在位于西班牙西南部的类似热带稀树草原的生态系统中设置了完全因子实验。H. murinum 对气候条件表现出很大的表型可塑性。处于温暖条件下的植物(即 W 和 WD 处理)更早开花,而处于综合胁迫下的植物(WD)每单位叶质量的叶面积投资更高(即 SLA 更高),并产生更重的种子。我们的研究结果还表明,甲基化的水平和模式都随气候处理而发生显著变化,D 和 W 的组合与 D 和 W 单独处理相比,诱导了明显不同的表观遗传反应。这项工作的主要结论表明,在未来的气候变化情景下,基因表达的表观遗传调控可能对维持同型平衡和功能稳定性发挥作用。