Suppr超能文献

表面平静,内部活跃。鱼腥藻 PCC 7120 氮代谢的分子动态平衡。

Calm on the surface, dynamic on the inside. Molecular homeostasis of Anabaena sp. PCC 7120 nitrogen metabolism.

机构信息

Department of Life Sciences, Imperial College London, London, UK.

Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, Georgia, USA.

出版信息

Plant Cell Environ. 2021 Jun;44(6):1885-1907. doi: 10.1111/pce.14034. Epub 2021 Mar 3.

Abstract

Nitrogen sources are all converted into ammonium/ia as a first step of assimilation. It is reasonable to expect that molecular components involved in the transport of ammonium/ia across biological membranes connect with the regulation of both nitrogen and central metabolism. We applied both genetic (i.e., Δamt mutation) and environmental treatments to a target biological system, the cyanobacterium Anabaena sp PCC 7120. The aim was to both perturb nitrogen metabolism and induce multiple inner nitrogen states, respectively, followed by targeted quantification of key proteins, metabolites and enzyme activities. The absence of AMT transporters triggered a substantial whole-system response, affecting enzyme activities and quantity of proteins and metabolites, spanning nitrogen and carbon metabolisms. Moreover, the Δamt strain displayed a molecular fingerprint indicating nitrogen deficiency even under nitrogen replete conditions. Contrasting with such dynamic adaptations was the striking near-complete lack of an externally measurable altered phenotype. We conclude that this species evolved a highly robust and adaptable molecular network to maintain homeostasis, resulting in substantial internal but minimal external perturbations. This analysis provides evidence for a potential role of AMT transporters in the regulatory/signalling network of nitrogen metabolism and the existence of a novel fourth regulatory mechanism controlling glutamine synthetase activity.

摘要

氮源都被转化为铵/亚铵作为同化的第一步。可以合理地预期,参与铵/亚铵跨生物膜运输的分子成分与氮和中心代谢的调节都有关联。我们将遗传(即 Δamt 突变)和环境处理应用于一个目标生物系统,即蓝藻 Anabaena sp PCC 7120。目的是分别扰乱氮代谢并诱导多种内部氮状态,然后对关键蛋白质、代谢物和酶活性进行靶向定量。AMT 转运蛋白的缺失触发了整个系统的显著反应,影响了氮碳代谢的酶活性以及蛋白质和代谢物的数量。此外,Δamt 菌株显示出分子指纹,表明即使在氮充足的条件下也存在氮缺乏。与这种动态适应形成鲜明对比的是,几乎完全没有可测量的外部表型改变。我们得出的结论是,该物种进化出了一种高度稳健和适应性强的分子网络来维持内稳态,从而导致大量的内部但最小的外部干扰。这项分析为 AMT 转运蛋白在氮代谢的调节/信号网络中的潜在作用以及控制谷氨酰胺合成酶活性的第四个新型调节机制提供了证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验