Werner Elisa, Huokko Tuomas, Santana-Sánchez Anita, Picossi Silvia, Nikkanen Lauri, Herrero Antonia, Allahverdiyeva Yagut
Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland.
Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain.
Physiol Plant. 2025 May-Jun;177(3):e70248. doi: 10.1111/ppl.70248.
In the filamentous cyanobacterium Anabaena sp. PCC 7120, heterocyst formation is triggered by changes in the C/N-ratio and relies on transcriptional reprogramming. The transcription factor PacR is considered a global regulator of carbon assimilation under photoautotrophic conditions, influencing the carbon concentrating mechanism and photosynthesis. It plays a role in balancing reducing power generation while protecting the photosynthetic apparatus from oxidative damage. However, PacR also binds to promoters of genes associated with heterocyst formation, although the underlying mechanisms remain unclear. To explore this, we studied the response of a PacR-deletion mutant to a nitrogen source shift from ammonium to nitrate. The absence of PacR led to heterocyst formation in nitrate-containing media, as well as reduced growth and chlorophyll content. We observed impaired nitrate uptake and disrupted ammonium assimilation via the GS/GOGAT-cycle. This phenotype may stem from PacR-mediated regulation of key genes of nitrogen and carbon metabolism as well as photosynthesis. An impact on photosynthesis is also apparent in the mutant, including a slight decrease in the size of the photo-reducible Fed-pool, suggesting that a shortage of reducing equivalents may contribute to nitrogen metabolism impairment.
在丝状蓝细菌鱼腥藻Anabaena sp. PCC 7120中,异形胞的形成由碳氮比变化触发,并依赖于转录重编程。转录因子PacR被认为是光合自养条件下碳同化的全局调节因子,影响碳浓缩机制和光合作用。它在平衡还原力产生的同时,保护光合机构免受氧化损伤。然而,PacR也与异形胞形成相关基因的启动子结合,尽管其潜在机制尚不清楚。为了探究这一点,我们研究了PacR缺失突变体对氮源从铵盐转变为硝酸盐的响应。PacR的缺失导致在含硝酸盐的培养基中形成异形胞,以及生长和叶绿素含量降低。我们观察到硝酸盐吸收受损,并且通过谷氨酰胺合成酶/谷氨酸合酶循环的铵同化被破坏。这种表型可能源于PacR介导的对氮和碳代谢以及光合作用关键基因的调控。在突变体中对光合作用的影响也很明显,包括光还原铁氧还蛋白池大小略有下降,这表明还原当量的短缺可能导致氮代谢受损。