Suppr超能文献

使用标准胸部 X 光片进行深度学习检测肺动脉楔压升高。

Deep Learning for Detection of Elevated Pulmonary Artery Wedge Pressure Using Standard Chest X-Ray.

机构信息

Ultrasound Examination Center, Tokushima University Hospital, Tokushima, Japan.

Department of Cardiovascular Medicine, Tokushima University Hospital, Tokushima, Japan.

出版信息

Can J Cardiol. 2021 Aug;37(8):1198-1206. doi: 10.1016/j.cjca.2021.02.007. Epub 2021 Feb 18.

Abstract

BACKGROUND

To accurately diagnose and control heart failure (HF), it is important to carry out a simple assessment of elevated pulmonary arterial wedge pressure (PAWP). The aim of this study was to develop and validate an objective method for detecting elevated PAWP by applying deep learning (DL) to a chest x-ray (CXR).

METHODS

We enrolled 1013 consecutive patients with a right-heart catheter between October 2009 and February 2020. We developed a convolutional neural network to identify patients with elevated PAWP (> 18 mm Hg) as the actual value of PAWP to be used in the dataset for training. In the prospective validation dataset used to detect elevated PAWP, the area under the receiver operating characteristic curve (AUC) was calculated using the DL model that evaluated the CXR.

RESULTS

In the prospective validation dataset, the AUC of the DL model with CXR was not significantly different from the AUC produced by brain natriuretic peptide (BNP) and the echocardiographic left-ventricular diastolic dysfunction (DD) algorithm (DL model: 0.77 vs BNP: 0.77 vs DD algorithm: 0.70; respectively; P = NS for all comparisons); it was, however, significantly higher than the AUC of the cardiothoracic ratio (DL model vs cardiothoracic ratio [CTR]: 0.66, P = 0.044). The model based on 3 parameters (BNP, DD algorithm, and CTR) was improved by adding the DL model (AUC: from 0.80 to 0.86; P = 0.041).

CONCLUSIONS

Applying the DL model based on a CXR (a classical, universal, and low-cost test) is useful for screening for elevated PAWP.

摘要

背景

为了准确诊断和控制心力衰竭(HF),对升高的肺动脉楔压(PAWP)进行简单评估非常重要。本研究旨在通过将深度学习(DL)应用于胸部 X 射线(CXR)来开发和验证一种检测升高的 PAWP 的客观方法。

方法

我们纳入了 2009 年 10 月至 2020 年 2 月期间连续 1013 例接受右心导管检查的患者。我们开发了一个卷积神经网络,以识别 PAWP 升高(>18mmHg)的患者,将 PAWP 的实际值作为数据集用于训练。在用于检测升高的 PAWP 的前瞻性验证数据集中,使用评估 CXR 的 DL 模型计算受试者工作特征曲线下的面积(AUC)。

结果

在前瞻性验证数据集中,基于 CXR 的 DL 模型的 AUC 与脑利钠肽(BNP)和超声心动图左心室舒张功能障碍(DD)算法的 AUC 无显著差异(DL 模型:0.77 与 BNP:0.77 与 DD 算法:0.70;分别;所有比较的 P 值均无统计学意义);然而,它明显高于心胸比(DL 模型与心胸比 [CTR]:0.66,P=0.044)的 AUC。通过添加 DL 模型,基于 3 个参数(BNP、DD 算法和 CTR)的模型得到改善(AUC:从 0.80 提高到 0.86;P=0.041)。

结论

基于 CXR(一种经典、通用且低成本的测试)的 DL 模型对于筛选升高的 PAWP 是有用的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验