Suppr超能文献

超声心动图辅助的收缩功能人工智能解读。

Artificial intelligence-assisted interpretation of systolic function by echocardiogram.

机构信息

Department of Cardiovascular Medicine, Tokushima University Hospital, Tokushima, Japan.

Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.

出版信息

Open Heart. 2023 Jul;10(2). doi: 10.1136/openhrt-2023-002287.

Abstract

OBJECTIVE

Precise and reliable echocardiographic assessment of left ventricular ejection fraction (LVEF) is needed for clinical decision-making. Recently, artificial intelligence (AI) models have been developed to estimate LVEF accurately. The aim of this study was to evaluate whether an AI model could estimate an expert read of LVEF and reduce the interinstitutional variability of level 1 readers with the AI-LVEF displayed on the echocardiographic screen.

METHODS

This prospective, multicentre echocardiographic study was conducted by five cardiologists of level 1 echocardiographic skill (minimum level of competency to interpret images) from different hospitals. Protocol 1: Visual LVEFs for the 48 cases were measured without input from the AI-LVEF. Protocol 2: the 48 cases were again shown to all readers with inclusion of AI-LVEF data. To assess the concordance and accuracy with or without AI-LVEF, each visual LVEF measurement was compared with an average of the estimates by five expert readers as a reference.

RESULTS

A good correlation was found between AI-LVEF and reference LVEF (r=0.90, p<0.001) from the expert readers. For the classification LVEF, the area under the curve was 0.95 on heart failure with preserved EF and 0.96 on heart failure reduced EF. For the precision, the SD was reduced from 6.1±2.3 to 2.5±0.9 (p<0.001) with AI-LVEF. For the accuracy, the root-mean squared error was improved from 7.5±3.1 to 5.6±3.2 (p=0.004) with AI-LVEF.

CONCLUSIONS

AI can assist with the interpretation of systolic function on an echocardiogram for level 1 readers from different institutions.

摘要

目的

临床决策需要精确可靠的超声心动图左心室射血分数(LVEF)评估。最近,已经开发出人工智能(AI)模型来准确估计 LVEF。本研究旨在评估 AI 模型是否可以估计专家读取的 LVEF,并通过在超声心动图屏幕上显示 AI-LVEF 来减少一级读者的机构间变异性。

方法

这是一项由来自不同医院的 5 名具有一级超声心动图技能(解释图像的最低能力水平)的心脏病专家进行的前瞻性、多中心超声心动图研究。方案 1:在没有 AI-LVEF 输入的情况下测量 48 例的视觉 LVEF。方案 2:再次向所有读者显示 48 例病例,包括 AI-LVEF 数据。为了评估有无 AI-LVEF 的一致性和准确性,将每个视觉 LVEF 测量值与五位专家读者的估计平均值进行比较作为参考。

结果

从专家读者那里发现 AI-LVEF 与参考 LVEF(r=0.90,p<0.001)之间存在良好的相关性。对于 LVEF 的分类,心力衰竭伴保留 EF 的曲线下面积为 0.95,心力衰竭降低 EF 的曲线下面积为 0.96。在精度方面,使用 AI-LVEF 后,SD 从 6.1±2.3 降至 2.5±0.9(p<0.001)。在准确性方面,使用 AI-LVEF 后,均方根误差从 7.5±3.1 提高到 5.6±3.2(p=0.004)。

结论

人工智能可以帮助一级读者从不同机构解释超声心动图上的收缩功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dba8/10357654/3ad6820c3e94/openhrt-2023-002287f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验