Suppr超能文献

用于探测核糖核蛋白成核和凝聚物特性的单分子和整体方法。

Single-molecule and ensemble methods to probe RNP nucleation and condensate properties.

作者信息

Rhine Kevin, Skanchy Sophie, Myong Sua

机构信息

Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, United States; Department of Biology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, United States.

Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, United States.

出版信息

Methods. 2022 Jan;197:74-81. doi: 10.1016/j.ymeth.2021.02.012. Epub 2021 Feb 19.

Abstract

Biomolecular condensates often consist of intrinsically disordered protein and RNA molecules, which together promote the formation of membraneless organelles in cells. The nucleation, condensation, and maturation of condensates is a critical yet poorly understood process. Here, we present single-molecule and accompanying ensemble methods to quantify these processes more comprehensively. In particular, we focus on how to properly design and execute a single-molecule nucleation assay, in which we detect signals arising from individual units of fluorescently labeled RNA-binding proteins associating with an RNA substrate. The analysis of this data allows one to determine the kinetics involved with each step of nucleation. Complemented with meso-scale techniques that measure the biophysical properties of ribonucleoprotein condensates, the methods described herein are powerful tools that can be adopted for studying any protein-RNA interactions that promote phase separation.

摘要

生物分子凝聚物通常由内在无序的蛋白质和RNA分子组成,它们共同促进细胞中无膜细胞器的形成。凝聚物的成核、凝聚和成熟是一个关键但却知之甚少的过程。在这里,我们提出了单分子及配套的整体方法,以更全面地量化这些过程。特别地,我们专注于如何正确设计和执行单分子成核测定,其中我们检测与RNA底物结合的荧光标记RNA结合蛋白的各个单元产生的信号。对这些数据的分析使人们能够确定成核每个步骤所涉及的动力学。本文所述方法辅以测量核糖核蛋白凝聚物生物物理性质的中尺度技术,是可用于研究任何促进相分离的蛋白质-RNA相互作用的强大工具。

相似文献

1
Single-molecule and ensemble methods to probe RNP nucleation and condensate properties.
Methods. 2022 Jan;197:74-81. doi: 10.1016/j.ymeth.2021.02.012. Epub 2021 Feb 19.
3
Single-Molecule and Ensemble Methods to Probe Initial Stages of RNP Granule Assembly.
Methods Mol Biol. 2018;1814:325-338. doi: 10.1007/978-1-4939-8591-3_19.
4
Single molecule probing of disordered RNA binding proteins.
STAR Protoc. 2022 Jan 28;3(1):101131. doi: 10.1016/j.xpro.2022.101131. eCollection 2022 Mar 18.
5
Dilute phase oligomerization can oppose phase separation and modulate material properties of a ribonucleoprotein condensate.
Proc Natl Acad Sci U S A. 2022 Mar 29;119(13):e2120799119. doi: 10.1073/pnas.2120799119. Epub 2022 Mar 25.
6
RNA-driven phase transitions in biomolecular condensates.
Mol Cell. 2024 Oct 3;84(19):3692-3705. doi: 10.1016/j.molcel.2024.09.005.
8
More than a bystander: RNAs specify multifaceted behaviors of liquid-liquid phase-separated biomolecular condensates.
Bioessays. 2024 Mar;46(3):e2300203. doi: 10.1002/bies.202300203. Epub 2024 Jan 4.

引用本文的文献

1
Probing condensate microenvironments with a micropeptide killswitch.
Nature. 2025 Jun 4. doi: 10.1038/s41586-025-09141-5.
2
3
Notch1 Phase Separation Coupled Percolation facilitates target gene expression and enhancer looping.
bioRxiv. 2024 Aug 1:2023.03.17.533124. doi: 10.1101/2023.03.17.533124.
4
Advanced imaging techniques for studying protein phase separation in living cells and at single-molecule level.
Curr Opin Chem Biol. 2023 Oct;76:102371. doi: 10.1016/j.cbpa.2023.102371. Epub 2023 Jul 29.
5
Deciphering molecular mechanisms of phase separation in RNA biology by single-molecule biophysical technologies.
Acta Biochim Biophys Sin (Shanghai). 2023 Jun 19;55(7):1034-1041. doi: 10.3724/abbs.2023113.
6
Utilizing functional cell-free extracts to dissect ribonucleoprotein complex biology at single-molecule resolution.
Wiley Interdiscip Rev RNA. 2023 Sep-Oct;14(5):e1787. doi: 10.1002/wrna.1787. Epub 2023 Apr 12.
7
A sePARate phase? Poly(ADP-ribose) versus RNA in the organization of biomolecular condensates.
Nucleic Acids Res. 2022 Oct 28;50(19):10817-10838. doi: 10.1093/nar/gkac866.
8
Aging RNA granule dynamics in neurodegeneration.
Front Mol Biosci. 2022 Sep 16;9:991641. doi: 10.3389/fmolb.2022.991641. eCollection 2022.
9
Poly(ADP-ribose) drives condensation of FUS via a transient interaction.
Mol Cell. 2022 Mar 3;82(5):969-985.e11. doi: 10.1016/j.molcel.2022.01.018. Epub 2022 Feb 18.

本文引用的文献

1
ALS/FTLD-Linked Mutations in FUS Glycine Residues Cause Accelerated Gelation and Reduced Interactions with Wild-Type FUS.
Mol Cell. 2020 Nov 19;80(4):666-681.e8. doi: 10.1016/j.molcel.2020.10.014. Epub 2020 Nov 6.
2
RNA contributions to the form and function of biomolecular condensates.
Nat Rev Mol Cell Biol. 2021 Mar;22(3):183-195. doi: 10.1038/s41580-020-0264-6. Epub 2020 Jul 6.
3
Loss of Dynamic RNA Interaction and Aberrant Phase Separation Induced by Two Distinct Types of ALS/FTD-Linked FUS Mutations.
Mol Cell. 2020 Jan 2;77(1):82-94.e4. doi: 10.1016/j.molcel.2019.09.022. Epub 2019 Oct 17.
4
Commonly used FRET fluorophores promote collapse of an otherwise disordered protein.
Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):8889-8894. doi: 10.1073/pnas.1813038116. Epub 2019 Apr 16.
5
Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties.
Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):7889-7898. doi: 10.1073/pnas.1821038116. Epub 2019 Mar 29.
6
Matter over mind: Liquid phase separation and neurodegeneration.
J Biol Chem. 2019 May 3;294(18):7160-7168. doi: 10.1074/jbc.REV118.001188. Epub 2019 Mar 26.
7
RNA Binding Antagonizes Neurotoxic Phase Transitions of TDP-43.
Neuron. 2019 Apr 17;102(2):321-338.e8. doi: 10.1016/j.neuron.2019.01.048. Epub 2019 Feb 27.
8
Molecular Crowding Tunes Material States of Ribonucleoprotein Condensates.
Biomolecules. 2019 Feb 19;9(2):71. doi: 10.3390/biom9020071.
10
Multicolour single-molecule tracking of mRNA interactions with RNP granules.
Nat Cell Biol. 2019 Feb;21(2):162-168. doi: 10.1038/s41556-018-0263-4. Epub 2019 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验