Suppr超能文献

基于带状线读出技术的用于同时进行PET/MRI的PET插入件的设计、评估及初步成像结果

Design, evaluation and initial imaging results of a PET insert based on strip-line readout for simultaneous PET/MRI.

作者信息

Kim H, Hua Y, Chen H-T, Tsai H-M, Chen C-T, Karczmar G, Fan X, Xi D, Xie Q, Chou C-Y, Kao C-M

机构信息

Department of Radiology, University of Chicago, Chicago, IL 60637, USA.

Biomedical Engineering Department, Huazhong University of Science and Technology, Wuhan, China.

出版信息

Nucl Instrum Methods Phys Res A. 2020 Apr 11;959. doi: 10.1016/j.nima.2020.163575. Epub 2020 Feb 5.

Abstract

We present the development of a PET insert system for potential simultaneous PET/MR imaging using a 9.4 T small animal MRI scanner to test our system. The detectors of the system adopt a strip-line based multiplexing readout method for SiPM signals. In this readout, multiple SiPM outputs in a row share a common strip-line. The position information about a hit SiPM is encoded in the propagation time difference of the signals arriving at the two ends of the strip-line. The use of strip-lines allows us to place the data acquisition electronics remotely from the detector module to greatly simplify the design of the detector module and minimize the mutual electromagnetic interference. The prototype is comprised of 14 detector modules, each of which consists of an 8x4 LYSO scintillator array (each LYSO crystal is 3x3x10 mm) coupled to two units of Hamamatsu MPPC arrays (4x4, 3.2 mm pitch) that are mounted on a strip-line board. On the strip-line board, outputs of the 32 SiPMs are routed to 2 strip-lines so that 16 SiPM signals share a strip-line. The detector modules are installed inside a plastic cylindrical supporting structure with an inner and outer diameter of 60 mm and 115 mm, respectively, to fit inside a Bruker BioSpec 9.4 Tesla MR scanner. The axial field of view of the prototype is 25.4 mm. The strip-lines were extended by using 5-meter cables to a sampling data acquisition (DAQ) board placed outside the magnet. The detectors were not shielded in the interest of investigating how they may affect and be affected by the MRI. Experimental tests were conducted to evaluate detection performance, and phantom and animal imaging were carried out to assess the spatial resolution and the MR compatibility of the PET insert. Initial results are encouraging and demonstrate that the prototype insert PET can potentially be used for PET/MR imaging if appropriate shielding will be implemented for minimizing the mutual interference between the PET and MRI systems.

摘要

我们展示了一种用于潜在的同步正电子发射断层扫描/磁共振成像(PET/MR)的PET插入系统的开发,该系统使用一台9.4T小动物磁共振成像扫描仪来测试我们的系统。该系统的探测器对硅光电倍增管(SiPM)信号采用基于带状线的多路复用读出方法。在这种读出方式中,一排中的多个SiPM输出共享一条公共带状线。关于击中SiPM的位置信息通过信号到达带状线两端的传播时间差进行编码。带状线的使用使我们能够将数据采集电子设备放置在远离探测器模块的位置,从而极大地简化探测器模块的设计并最小化相互电磁干扰。该原型由14个探测器模块组成,每个探测器模块由一个8×4的硅酸钇镥(LYSO)闪烁体阵列(每个LYSO晶体为3×3×10毫米)与两个滨松多像素光子计数器(MPPC)阵列单元(4×4,间距3.2毫米)耦合而成,这些MPPC阵列安装在一个带状线板上。在带状线板上,32个SiPM的输出被路由到2条带状线,以便16个SiPM信号共享一条带状线。探测器模块安装在一个塑料圆柱形支撑结构内,该支撑结构的内径和外径分别为60毫米和115毫米,以适配布鲁克BioSpec 9.4特斯拉磁共振扫描仪。该原型的轴向视野为25.4毫米。带状线通过使用5米长的电缆延伸到放置在磁体外部的采样数据采集(DAQ)板。为了研究探测器如何影响磁共振成像以及如何受到磁共振成像的影响,探测器未进行屏蔽。进行了实验测试以评估探测性能,并进行了体模和动物成像以评估PET插入件的空间分辨率和磁共振兼容性。初步结果令人鼓舞,表明如果实施适当的屏蔽以最小化PET和磁共振成像系统之间的相互干扰,该原型插入式PET有可能用于PET/MR成像。

相似文献

1
Design, evaluation and initial imaging results of a PET insert based on strip-line readout for simultaneous PET/MRI.
Nucl Instrum Methods Phys Res A. 2020 Apr 11;959. doi: 10.1016/j.nima.2020.163575. Epub 2020 Feb 5.
2
A feasibility study of a PET/MRI insert detector using strip-line and waveform sampling data acquisition.
Nucl Instrum Methods Phys Res A. 2015 Jun 1;784:557-564. doi: 10.1016/j.nima.2014.12.080.
4
A Silicon Photo-multiplier Signal Readout Using Strip-line and Waveform Sampling for Positron Emission Tomography.
Nucl Instrum Methods Phys Res A. 2016 Sep 11;830:119-129. doi: 10.1016/j.nima.2016.05.085. Epub 2016 May 24.
5
Initial results of simultaneous PET/MRI experiments with an MRI-compatible silicon photomultiplier PET scanner.
J Nucl Med. 2012 Apr;53(4):608-14. doi: 10.2967/jnumed.111.097501. Epub 2012 Mar 13.
7
Performance of long rectangular semi-monolithic scintillator PET detectors.
Med Phys. 2019 Apr;46(4):1608-1619. doi: 10.1002/mp.13432. Epub 2019 Feb 20.
8
Development and performance of SIAT bPET: a high-resolution and high-sensitivity MR-compatible brain PET scanner using dual-ended readout detectors.
Eur J Nucl Med Mol Imaging. 2024 Jan;51(2):346-357. doi: 10.1007/s00259-023-06458-z. Epub 2023 Oct 2.
9
MR-compatibility of a high-resolution small animal PET insert operating inside a 7 T MRI.
Phys Med Biol. 2016 Nov 21;61(22):7934-7956. doi: 10.1088/0031-9155/61/22/7934. Epub 2016 Oct 25.
10
Validation of the design of a high-sensitivity and high-resolution PET system for a preclinical PET/EPR hybrid scanner.
Nucl Instrum Methods Phys Res A. 2024 Jun;1063. doi: 10.1016/j.nima.2024.169333. Epub 2024 Apr 9.

引用本文的文献

1
DOI- and TOF-capable PET array detector using double-ended light readout and stripline-based row and column electronic readout.
IEEE Trans Radiat Plasma Med Sci. 2024 Mar;8(3):269-276. doi: 10.1109/TRPMS.2024.3360942. Epub 2024 Jan 31.
2
A Preclinical Positron Emission Tomography (PET) and Electron-Paramagnetic-Resonance-Imaging (EPRI) Hybrid System: PET Detector Module.
IEEE Trans Radiat Plasma Med Sci. 2023 Nov;7(8):794-801. doi: 10.1109/trpms.2023.3301788. Epub 2023 Aug 3.
3
Multiplexing Readout for Time-of-Flight (TOF) PET Detectors Using Striplines.
IEEE Trans Radiat Plasma Med Sci. 2021;5(5):662-670. doi: 10.1109/trpms.2021.3051364. Epub 2021 Jan 13.
4
Development of a PET/EPRI combined imaging system for assessing tumor hypoxia.
J Instrum. 2021 Mar;16(3). doi: 10.1088/1748-0221/16/03/p03031. Epub 2021 Mar 19.

本文引用的文献

1
PET performance evaluation of MADPET4: a small animal PET insert for a 7 T MRI scanner.
Phys Med Biol. 2017 Nov 1;62(22):8671-8692. doi: 10.1088/1361-6560/aa910d.
2
A Silicon Photo-multiplier Signal Readout Using Strip-line and Waveform Sampling for Positron Emission Tomography.
Nucl Instrum Methods Phys Res A. 2016 Sep 11;830:119-129. doi: 10.1016/j.nima.2016.05.085. Epub 2016 May 24.
4
A feasibility study of a PET/MRI insert detector using strip-line and waveform sampling data acquisition.
Nucl Instrum Methods Phys Res A. 2015 Jun 1;784:557-564. doi: 10.1016/j.nima.2014.12.080.
5
PET/MRI insert using digital SiPMs: Investigation of MR-compatibility.
Nucl Instrum Methods Phys Res A. 2014 Jan 11;734(Pt B):116-121. doi: 10.1016/j.nima.2013.08.077.
6
PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging.
Phys Med Biol. 2015 Feb 21;60(4):R115-54. doi: 10.1088/0031-9155/60/4/R115. Epub 2015 Feb 4.
7
Initial results of simultaneous PET/MRI experiments with an MRI-compatible silicon photomultiplier PET scanner.
J Nucl Med. 2012 Apr;53(4):608-14. doi: 10.2967/jnumed.111.097501. Epub 2012 Mar 13.
8
An outlook on future design of hybrid PET/MRI systems.
Med Phys. 2011 Oct;38(10):5667-89. doi: 10.1118/1.3633909.
10
Design and performance from an integrated PET/MRI system for small animals.
Ann Nucl Med. 2010 Feb;24(2):89-98. doi: 10.1007/s12149-009-0333-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验