Zaer Hamed, Deshmukh Ashlesha, Orlowski Dariusz, Fan Wei, Prouvot Pierre-Hugues, Glud Andreas Nørgaard, Jensen Morten Bjørn, Worm Esben Schjødt, Lukacova Slávka, Mikkelsen Trine Werenberg, Fitting Lise Moberg, Adler John R, Schneider M Bret, Jensen Martin Snejbjerg, Fu Quanhai, Go Vinson, Morizio James, Sørensen Jens Christian Hedemann, Stroh Albrecht
Department of Neurosurgery, Center for Experimental Neuroscience (CENSE), Aarhus University Hospital, Aarhus, Denmark.
Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
Front Hum Neurosci. 2021 Feb 3;15:618626. doi: 10.3389/fnhum.2021.618626. eCollection 2021.
Recording and manipulating neuronal ensemble activity is a key requirement in advanced neuromodulatory and behavior studies. Devices capable of both recording and manipulating neuronal activity brain-computer interfaces (BCIs) should ideally operate un-tethered and allow chronic longitudinal manipulations in the freely moving animal. In this study, we designed a new intracortical BCI feasible of telemetric recording and stimulating local gray and white matter of visual neural circuit after irradiation exposure. To increase the translational reliance, we put forward a Göttingen minipig model. The animal was stereotactically irradiated at the level of the visual cortex upon defining the target by a fused cerebral MRI and CT scan. A fully implantable neural telemetry system consisting of a 64 channel intracortical multielectrode array, a telemetry capsule, and an inductive rechargeable battery was then implanted into the visual cortex to record and manipulate local field potentials, and multi-unit activity. We achieved a 3-month stability of the functionality of the un-tethered BCI in terms of telemetric radio-communication, inductive battery charging, and device biocompatibility for 3 months. Finally, we could reliably record the local signature of sub- and suprathreshold neuronal activity in the visual cortex with high bandwidth without complications. The ability to wireless induction charging combined with the entirely implantable design, the rather high recording bandwidth, and the ability to record and stimulate simultaneously put forward a wireless BCI capable of long-term un-tethered real-time communication for causal preclinical circuit-based closed-loop interventions.
记录和操纵神经元集群活动是先进的神经调节和行为研究的关键要求。能够记录和操纵神经元活动的设备——脑机接口(BCI),理想情况下应能在无束缚状态下运行,并允许在自由活动的动物身上进行长期纵向操纵。在本研究中,我们设计了一种新型的皮层内BCI,它能够在辐射暴露后对视觉神经回路的局部灰质和白质进行遥测记录和刺激。为了提高转化相关性,我们提出了一种 Göttingen 小型猪模型。通过融合的脑MRI和CT扫描确定靶点后,在视觉皮层水平对动物进行立体定向照射。然后将一个由64通道皮层内多电极阵列、遥测胶囊和感应式可充电电池组成的完全可植入神经遥测系统植入视觉皮层,以记录和操纵局部场电位以及多单元活动。在遥测无线电通信、感应电池充电和设备生物相容性方面,我们实现了无束缚BCI功能3个月的稳定性。最后,我们能够可靠地以高带宽记录视觉皮层中阈下和阈上神经元活动的局部特征,且无并发症。无线感应充电能力与完全可植入设计、相当高的记录带宽以及同时记录和刺激的能力相结合,提出了一种能够进行长期无束缚实时通信的无线BCI,用于基于临床前电路的因果闭环干预。