Suppr超能文献

阿尔茨海默病进展过程中的灰质退化模式:一项基于感兴趣区域的表面形态测量学研究。

Gray Matter Deterioration Pattern During Alzheimer's Disease Progression: A Regions-of-Interest Based Surface Morphometry Study.

作者信息

Wu Zhanxiong, Peng Yun, Hong Ming, Zhang Yingchun

机构信息

School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China.

Department of Biomedical Engineering, University of Houston, Houston, TX, United States.

出版信息

Front Aging Neurosci. 2021 Feb 3;13:593898. doi: 10.3389/fnagi.2021.593898. eCollection 2021.

Abstract

Accurate detection of the regions of Alzheimer's disease (AD) lesions is critical for early intervention to effectively slow down the progression of the disease. Although gray matter volumetric abnormalities are commonly detected in patients with mild cognition impairment (MCI) and patients with AD, the gray matter surface-based deterioration pattern associated with the progression of the disease from MCI to AD stages is largely unknown. To identify group differences in gray matter surface morphometry, including cortical thickness, the gyrification index (GI), and the sulcus depth, 80 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were split into healthy controls (HCs; = 20), early MCIs (EMCI; = 20), late MCIs (LMCI; = 20), and ADs ( = 20). Regions-of-interest (ROI)-based surface morphometry was subsequently studied and compared across the four stage groups to characterize the gray matter deterioration during AD progression. Co-alteration patterns (Spearman's correlation coefficient) across the whole brain were also examined. Results showed that patients with MCI and AD exhibited a significant reduction in cortical thickness ( < 0.001) mainly in the cingulate region (four subregions) and in the temporal (thirteen subregions), parietal (five subregions), and frontal (six subregions) lobes compared to HCs. The sulcus depth of the eight temporal, four frontal, four occipital, and eight parietal subregions were also significantly affected ( < 0.001) by the progression of AD. The GI was shown to be insensitive to AD progression (only three subregions were detected with a significant difference, < 0.001). Moreover, Spearman's correlation analysis confirmed that the co-alteration pattern of the cortical thickness and sulcus depth indices is predominant during AD progression. The findings highlight the relevance between gray matter surface morphometry and the stages of AD, laying the foundation for tracking of AD progression. The co-alteration pattern of surface-based morphometry would improve the researchers' knowledge of the underlying pathologic mechanisms in AD.

摘要

准确检测阿尔茨海默病(AD)病变区域对于早期干预以有效减缓疾病进展至关重要。尽管在轻度认知障碍(MCI)患者和AD患者中通常能检测到灰质体积异常,但与疾病从MCI进展到AD阶段相关的基于灰质表面的恶化模式在很大程度上尚不清楚。为了确定灰质表面形态测量的组间差异,包括皮质厚度、脑回化指数(GI)和脑沟深度,将阿尔茨海默病神经成像计划(ADNI)数据库中的80名受试者分为健康对照组(HCs;n = 20)、早期MCI(EMCI;n = 20)、晚期MCI(LMCI;n = 20)和AD组(n = 20)。随后研究并比较了四个阶段组基于感兴趣区域(ROI)的表面形态测量,以表征AD进展过程中的灰质恶化情况。还检查了全脑的共同改变模式(斯皮尔曼相关系数)。结果显示,与HCs相比,MCI和AD患者的皮质厚度显著降低(P < 0.001),主要集中在扣带区域(四个亚区域)以及颞叶(十三个亚区域)、顶叶(五个亚区域)和额叶(六个亚区域)。AD进展也显著影响了八个颞叶、四个额叶、四个枕叶和八个顶叶亚区域的脑沟深度(P < 0.001)。结果表明GI对AD进展不敏感(仅检测到三个亚区域有显著差异,P < 0.001)。此外,斯皮尔曼相关分析证实,在AD进展过程中,皮质厚度和脑沟深度指数的共同改变模式占主导。这些发现突出了灰质表面形态测量与AD阶段之间的相关性,为追踪AD进展奠定了基础。基于表面的形态测量的共同改变模式将提高研究人员对AD潜在病理机制的认识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dbd/7886803/29b947247291/fnagi-13-593898-g0001.jpg

相似文献

1
Gray Matter Deterioration Pattern During Alzheimer's Disease Progression: A Regions-of-Interest Based Surface Morphometry Study.
Front Aging Neurosci. 2021 Feb 3;13:593898. doi: 10.3389/fnagi.2021.593898. eCollection 2021.
2
Patterns of Grey Matter Atrophy at Different Stages of Parkinson's and Alzheimer's Diseases and Relation to Cognition.
Brain Topogr. 2019 Jan;32(1):142-160. doi: 10.1007/s10548-018-0675-2. Epub 2018 Sep 11.
4
Differences in Cerebral Structure Associated With Depressive Symptoms in the Elderly With Alzheimer's Disease.
Front Aging Neurosci. 2020 May 12;12:107. doi: 10.3389/fnagi.2020.00107. eCollection 2020.
5
Hierarchical multi-class Alzheimer's disease diagnostic framework using imaging and clinical features.
Front Aging Neurosci. 2022 Aug 10;14:935055. doi: 10.3389/fnagi.2022.935055. eCollection 2022.
6
Effects of Meditation on Structural Changes of the Brain in Patients With Mild Cognitive Impairment or Alzheimer's Disease Dementia.
Front Hum Neurosci. 2021 Nov 12;15:728993. doi: 10.3389/fnhum.2021.728993. eCollection 2021.

引用本文的文献

1
Cortical morphology changes in default mode network regions as predictors of cognitive decline in relation to amyloid and tau deposits.
Brain Commun. 2025 Aug 28;7(5):fcaf320. doi: 10.1093/braincomms/fcaf320. eCollection 2025.
3
Association of retinal layer thickness with brain volume and cortical thickness in older adults.
Sci Rep. 2025 Aug 29;15(1):31804. doi: 10.1038/s41598-025-16008-2.
5
Mastication Influences Human Brain Anatomy.
J Oral Maxillofac Res. 2024 Dec 31;15(4):e4. doi: 10.5037/jomr.2024.15404. eCollection 2024 Oct-Dec.
7
Adversarial Learning for MRI Reconstruction and Classification of Cognitively Impaired Individuals.
IEEE Access. 2024;12:83169-83182. doi: 10.1109/access.2024.3408840. Epub 2024 Jun 3.
8
White matter microstructural integrity as a key to effective propagation of gamma entrainment in humans.
Geroscience. 2025 Feb;47(1):1019-1037. doi: 10.1007/s11357-024-01281-2. Epub 2024 Jul 15.
9
Progranulin and neuropathological features of Alzheimer's disease: longitudinal study.
Aging Clin Exp Res. 2024 Mar 5;36(1):55. doi: 10.1007/s40520-024-02715-9.
10
Histogram-based features track Alzheimer's progression in brain MRI.
Sci Rep. 2024 Jan 2;14(1):257. doi: 10.1038/s41598-023-50631-1.

本文引用的文献

1
Development of Brain Structural Networks Over Age 8: A Preliminary Study Based on Diffusion Weighted Imaging.
Front Aging Neurosci. 2020 Mar 10;12:61. doi: 10.3389/fnagi.2020.00061. eCollection 2020.
2
Functional Network Alterations in Patients With Amnestic Mild Cognitive Impairment Characterized Using Functional Near-Infrared Spectroscopy.
IEEE Trans Neural Syst Rehabil Eng. 2020 Jan;28(1):123-132. doi: 10.1109/TNSRE.2019.2956464. Epub 2019 Dec 4.
3
Parcellation influence on the connectivity-based structure-function relationship in the human brain.
Hum Brain Mapp. 2020 Apr 1;41(5):1167-1180. doi: 10.1002/hbm.24866. Epub 2019 Nov 19.
4
Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations.
Neuroimage Clin. 2019;23:101929. doi: 10.1016/j.nicl.2019.101929. Epub 2019 Jul 4.
5
Gray Matter Structural Network Disruptions in Survivors of Acute Lymphoblastic Leukemia with Chemotherapy Treatment.
Acad Radiol. 2020 Mar;27(3):e27-e34. doi: 10.1016/j.acra.2019.04.010. Epub 2019 Jun 4.
6
Effects of Brain Parcellation on the Characterization of Topological Deterioration in Alzheimer's Disease.
Front Aging Neurosci. 2019 May 21;11:113. doi: 10.3389/fnagi.2019.00113. eCollection 2019.
7
Diagnosis and prognosis of Alzheimer's disease using brain morphometry and white matter connectomes.
Neuroimage Clin. 2019;23:101859. doi: 10.1016/j.nicl.2019.101859. Epub 2019 May 13.
8
Gray matter structural covariance networks changes along the Alzheimer's disease continuum.
Neuroimage Clin. 2019;23:101828. doi: 10.1016/j.nicl.2019.101828. Epub 2019 Apr 17.
9
Association of short-term cognitive decline and MCI-to-AD dementia conversion with CSF, MRI, amyloid- and F-FDG-PET imaging.
Neuroimage Clin. 2019;22:101771. doi: 10.1016/j.nicl.2019.101771. Epub 2019 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验