Suppr超能文献

一种用于预测胃癌预后的包含五个长链非编码RNA的风险评分模型:结合TCGA和GEO数据集的综合分析

A risk score model with five long non-coding RNAs for predicting prognosis in gastric cancer: an integrated analysis combining TCGA and GEO datasets.

作者信息

Wu Yiguo, Deng Junping, Lai Shuhui, You Yujuan, Wu Jing

机构信息

Department of Medicine, Nanchang University, Nan Chang, China.

Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nan Chang, China.

出版信息

PeerJ. 2021 Feb 9;9:e10556. doi: 10.7717/peerj.10556. eCollection 2021.

Abstract

BACKGROUND

Gastric cancer (GC) is one of the most common carcinomas of the digestive tract, and the prognosis for these patients may be poor. There is evidence that some long non-coding RNAs(lncRNAs) can predict the prognosis of patients with GC. However, few lncRNA signatures have been used to predict prognosis. Herein, we aimed to construct a risk score model based on the expression of five lncRNAs to predict the prognosis of patients with GC and provide new potential therapeutic targets.

METHODS

We performed differentially expressed and survival analyses to identify differentially expressed survival-ralated lncRNAs by using GC patient expression profile data from The Cancer Genome Atlas (TCGA) database. We then established a formula including five lncRNAs to predict the prognosis of patients with GC. In addition, to verify the prognostic value of this risk score model, two independent Gene Expression Omnibus (GEO) datasets, GSE62254 ( = 300) and GSE15459 ( = 200), were employed as validation groups.

RESULTS

Based on the characteristics of five lncRNAs, patients with GC were divided into high or low risk subgroups. The prognostic value of the risk score model with five lncRNAs was confirmed in both TCGA and the two independent GEO datasets. Furthermore, stratification analysis results showed that this model had an independent prognostic value in patients with stage II-IV GC. We constructed a nomogram model combining clinical factors and the five lncRNAs to increase the accuracy of prognostic prediction. Enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) suggested that the five lncRNAs are associated with multiple cancer occurrence and progression-related pathways.

CONCLUSION

The risk score model including five lncRNAs can predict the prognosis of patients with GC, especially those with stage II-IV, and may provide potential therapeutic targets in future.

摘要

背景

胃癌(GC)是最常见的消化道癌之一,这些患者的预后可能较差。有证据表明,一些长链非编码RNA(lncRNA)可以预测GC患者的预后。然而,很少有lncRNA特征被用于预测预后。在此,我们旨在基于5种lncRNA的表达构建一个风险评分模型,以预测GC患者的预后,并提供新的潜在治疗靶点。

方法

我们使用来自癌症基因组图谱(TCGA)数据库的GC患者表达谱数据进行差异表达和生存分析,以鉴定差异表达的生存相关lncRNA。然后,我们建立了一个包含5种lncRNA的公式来预测GC患者的预后。此外,为了验证该风险评分模型的预后价值,将两个独立的基因表达综合数据库(GEO)数据集GSE62254(n = 300)和GSE15459(n = 200)用作验证组。

结果

根据5种lncRNA的特征,将GC患者分为高风险或低风险亚组。在TCGA和两个独立的GEO数据集中均证实了包含5种lncRNA的风险评分模型的预后价值。此外,分层分析结果表明,该模型在II-IV期GC患者中具有独立的预后价值。我们构建了一个结合临床因素和5种lncRNA的列线图模型,以提高预后预测的准确性。基于京都基因与基因组百科全书(KEGG)的富集分析表明,这5种lncRNA与多种癌症发生和进展相关途径有关。

结论

包含5种lncRNA的风险评分模型可以预测GC患者的预后,尤其是II-IV期患者,并且未来可能提供潜在的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02fd/7879943/1a35b6dd52b2/peerj-09-10556-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验