Tse Gary, Li Ka Hou Christien, Cheung Chloe Kwong Yee, Letsas Konstantinos P, Bhardwaj Aishwarya, Sawant Abhishek C, Liu Tong, Yan Gan-Xin, Zhang Henggui, Jeevaratnam Kamalan, Sayed Nazish, Cheng Shuk Han, Wong Wing Tak
Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.
Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.
Front Cardiovasc Med. 2021 Feb 3;8:620539. doi: 10.3389/fcvm.2021.620539. eCollection 2021.
Potassium is the predominant intracellular cation, with its extracellular concentrations maintained between 3. 5 and 5 mM. Among the different potassium disorders, hypokalaemia is a common clinical condition that increases the risk of life-threatening ventricular arrhythmias. This review aims to consolidate pre-clinical findings on the electrophysiological mechanisms underlying hypokalaemia-induced arrhythmogenicity. Both triggers and substrates are required for the induction and maintenance of ventricular arrhythmias. Triggered activity can arise from either early afterdepolarizations (EADs) or delayed afterdepolarizations (DADs). Action potential duration (APD) prolongation can predispose to EADs, whereas intracellular Ca overload can cause both EADs and DADs. Substrates on the other hand can either be static or dynamic. Static substrates include action potential triangulation, non-uniform APD prolongation, abnormal transmural repolarization gradients, reduced conduction velocity (CV), shortened effective refractory period (ERP), reduced excitation wavelength (CV × ERP) and increased critical intervals for re-excitation (APD-ERP). In contrast, dynamic substrates comprise increased amplitude of APD alternans, steeper APD restitution gradients, transient reversal of transmural repolarization gradients and impaired depolarization-repolarization coupling. The following review article will summarize the molecular mechanisms that generate these electrophysiological abnormalities and subsequent arrhythmogenesis.
钾是细胞内的主要阳离子,其细胞外浓度维持在3.5至5毫摩尔之间。在不同的钾紊乱中,低钾血症是一种常见的临床病症,会增加危及生命的室性心律失常的风险。本综述旨在整合关于低钾血症致心律失常性潜在电生理机制的临床前研究结果。室性心律失常的诱发和维持需要触发因素和基质。触发活动可源于早期后去极化(EADs)或延迟后去极化(DADs)。动作电位时程(APD)延长易引发EADs,而细胞内钙超载可导致EADs和DADs。另一方面,基质可以是静态的或动态的。静态基质包括动作电位三角化、APD非均匀延长、跨壁复极梯度异常、传导速度(CV)降低、有效不应期(ERP)缩短、兴奋波长(CV×ERP)减小以及再兴奋临界间期(APD - ERP)增加。相比之下,动态基质包括APD交替变化幅度增加、APD恢复梯度更陡、跨壁复极梯度的短暂逆转以及去极化 - 复极化耦联受损。以下综述文章将总结产生这些电生理异常及随后心律失常发生的分子机制。