Suppr超能文献

一位神经科学家的可靠工具集。

: A neuroscientist's sound toolkit.

作者信息

Hill N Jeremy, Mooney Scott W J, Prusky Glen T

机构信息

Stratton VA Medical Center, Albany, NY, USA.

Burke Neurological Institute, White Plains, NY, USA.

出版信息

Heliyon. 2021 Feb 10;7(2):e06236. doi: 10.1016/j.heliyon.2021.e06236. eCollection 2021 Feb.

Abstract

In neuroscientific experiments and applications, working with auditory stimuli demands software tools for generation and acquisition of raw audio, for composition and tailoring of that material into finished stimuli, for precisely timed presentation of the stimuli, and for experimental session recording. Numerous programming tools exist to approach these tasks, but their differing specializations and conventions demand extra time and effort for integration. In particular, verifying stimulus timing requires extensive engineering effort when developing new applications. This paper has two purposes. The first is to present (https://pypi.org/project/audiomath), a sound software library for Python that prioritizes the needs of neuroscientists. It minimizes programming effort by providing a simple object-oriented interface that unifies functionality for audio generation, manipulation, visualization, decoding, encoding, recording, and playback. It also incorporates specialized tools for measuring and optimizing stimulus timing. The second purpose is to relay what we have learned, during development and application of the software, about the twin challenges of delivering stimuli precisely at a certain time, and of precisely measuring the time at which stimuli were delivered. We provide a primer on these problems and the possible approaches to them. We then report audio latency measurements across a range of hardware, operating systems and settings, to illustrate the ways in which hardware and software factors interact to affect stimulus presentation performance, and the resulting pitfalls for the programmer and experimenter. In particular, we highlight the potential conflict between demands for low latency, low variability in latency ("jitter"), cooperativeness, and robustness. We report the ways in which can help to map this territory and provide a simplified path toward each application's particular priority. By unifying audio-related functionality and providing specialized diagnostic tools, both simplifies and potentiates the development of neuroscientific applications in Python.

摘要

在神经科学实验和应用中,处理听觉刺激需要软件工具来生成和采集原始音频、将这些素材合成并定制为成品刺激、精确计时呈现刺激以及记录实验过程。有许多编程工具可用于完成这些任务,但它们不同的专业特性和约定需要额外的时间和精力来进行集成。特别是在开发新应用时,验证刺激计时需要大量的工程工作。本文有两个目的。第一个目的是介绍(https://pypi.org/project/audiomath),这是一个面向Python的声音软件库,优先考虑神经科学家的需求。它通过提供一个简单的面向对象接口来统一音频生成、处理、可视化、解码、编码、录制和回放的功能,从而最大限度地减少编程工作量。它还集成了用于测量和优化刺激计时的专门工具。第二个目的是分享我们在软件的开发和应用过程中,关于在特定时间精确呈现刺激以及精确测量刺激呈现时间这两个双重挑战所学到的知识。我们提供了关于这些问题及其可能解决方法的入门介绍。然后,我们报告了在一系列硬件、操作系统和设置下的音频延迟测量结果,以说明硬件和软件因素如何相互作用来影响刺激呈现性能,以及给程序员和实验者带来的潜在陷阱。特别是,我们强调了低延迟、低延迟变异性(“抖动”)、协作性和鲁棒性等需求之间的潜在冲突。我们报告了 可以如何帮助梳理这一领域,并为每个应用的特定优先级提供一条简化路径。通过统一与音频相关的功能并提供专门的诊断工具, 既简化又增强了Python中神经科学应用的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b953/7881231/85018cf30a04/gr001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验