Suppr超能文献

模拟脑血管中血流和容积的动态变化。

Modelling dynamic changes in blood flow and volume in the cerebral vasculature.

机构信息

Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford Parks Road, Oxford, OX1 3PJ, UK.

出版信息

Neuroimage. 2018 Aug 1;176:124-137. doi: 10.1016/j.neuroimage.2018.04.037. Epub 2018 Apr 19.

Abstract

The cerebral microvasculature plays a key role in the transport of blood and the delivery of nutrients to the cells that perform brain function. Although recent advances in experimental imaging techniques mean that its structure and function can be interrogated to very small length scales, allowing individual vessels to be mapped to a fraction of 1 μm, these techniques currently remain confined to animal models. In-vivo human data can only be obtained at a much coarser length scale, of order 1 mm, meaning that mathematical models of the microvasculature play a key role in interpreting flow and metabolism data. However, there are close to 10,000 vessels even within a single voxel of size 1 mm. Given the number of vessels present within a typical voxel and the complexity of the governing equations for flow and volume changes, it is computationally challenging to solve these in full, particularly when considering dynamic changes, such as those found in response to neural activation. We thus consider here the governing equations and some of the simplifications that have been proposed in order more rigorously to justify in what generations of blood vessels these approximations are valid. We show that two approximations (neglecting the advection term and assuming a quasi-steady state solution for blood volume) can be applied throughout the cerebral vasculature and that two further approximations (a simple first order differential relationship between inlet and outlet flows and inlet and outlet pressures, and matching of static pressure at nodes) can be applied in vessels smaller than approximately 1 mm in diameter. We then show how these results can be applied in solving flow fields within cerebral vascular networks providing a simplified yet rigorous approach to solving dynamic flow fields and compare the results to those obtained with alternative approaches. We thus provide a framework to model cerebral blood flow and volume within the cerebral vasculature that can be used, particularly at sub human imaging length scales, to provide greater insight into the behaviour of blood flow and volume in the cerebral vasculature.

摘要

脑微血管在血液运输和向执行脑功能的细胞输送营养物质方面起着关键作用。尽管实验成像技术的最新进展意味着可以对其结构和功能进行非常小的长度尺度的检测,允许将单个血管映射到 1 μm 的一小部分,但这些技术目前仍然局限于动物模型。在体内,人类数据只能在更粗糙的长度尺度上获得,大约为 1 mm,这意味着微血管的数学模型在解释血流和代谢数据方面起着关键作用。然而,即使在大小为 1 mm 的单个体素内,也有近 10000 个血管。考虑到一个典型体素内存在的血管数量以及流量和体积变化的控制方程的复杂性,要完全求解这些方程是具有挑战性的,特别是在考虑动态变化时,例如在对神经激活的反应中发现的变化。因此,我们在这里考虑控制方程和一些已经提出的简化方法,以便更严格地证明这些近似在哪些代血管中是有效的。我们表明,两个近似(忽略对流项并假设血液体积的准稳态解)可以应用于整个大脑血管系统,另外两个近似(入口和出口流量之间的简单一阶微分关系以及入口和出口压力之间的关系,以及节点处静态压力的匹配)可以应用于直径小于约 1 mm 的血管中。然后,我们展示如何在解决大脑血管网络中的流场时应用这些结果,提供一种简化但严格的方法来解决动态流场,并将结果与替代方法获得的结果进行比较。因此,我们提供了一个在大脑血管系统内建模脑血流和体积的框架,可以在特别是低于人类成像长度尺度的情况下,更深入地了解大脑血管中血流和体积的行为。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验