Martín-Zamora Francisco M, Cole Joby, Donnellan Rory D, Guynes Kero, Carrillo-Baltodano Allan M, Dickman Mark J, Hurd Paul J, Martín-Durán José M
School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4 NS, UK.
Altos Labs, Cambridge Institute of Science, Granta Park, Cambridge, CB21 6GP, UK.
Genome Biol. 2025 Jun 10;26(1):160. doi: 10.1186/s13059-025-03626-2.
The dynamic addition and removal of posttranslational modifications on eukaryotic histones define regulatory regions that play a central role in genome and chromatin biology. However, our understanding of these regulatory mechanisms in animals is primarily based on a few model systems, preventing a general understanding of how histone-based regulation directs and promotes phenotypic variation during animal embryogenesis.
Here, we apply a comprehensive multi-omics approach to dissect the histone-based regulatory complement in Annelida, one of the largest invertebrate clades. Annelids exhibit a conserved histone repertoire organized in clusters of dynamically regulated, hyperaccessible chromatin. However, unlike other animals with reduced genomes, the worm Dimorphilus gyrociliatus shows a dramatically streamlined histone repertoire, revealing that genome compaction has lineage-specific effects on histone-based regulation. Notably, the annelid Owenia fusiformis has two H2A.X variants that co-occur in other animals, sometimes associate with fast cell divisions, and represent a unique case of widespread parallel evolution of a histone variant in Eukarya. Histone-modifying enzyme complements are largely conserved among annelids. Yet, temporal differences in the expression of a reduced set of histone modifiers correlate with distinct ontogenetic traits and variation in the adult landscapes of histone posttranslational modifications, as revealed by quantitative mass spectrometry in O. fusiformis and Capitella teleta.
Our analysis of histone-based epigenetics within a non-model phylum informs the evolution of histone-based regulation, presenting a framework to explore how this fundamental genome regulatory layer generally contributes to developmental and morphological diversification in annelids and animals.
真核生物组蛋白上翻译后修饰的动态添加和去除定义了在基因组和染色质生物学中起核心作用的调控区域。然而,我们对动物中这些调控机制的理解主要基于少数几个模型系统,这妨碍了我们对基于组蛋白的调控如何在动物胚胎发育过程中指导和促进表型变异的全面理解。
在这里,我们应用一种全面的多组学方法来剖析环节动物门(最大的无脊椎动物类群之一)中基于组蛋白的调控复合体。环节动物表现出一个保守的组蛋白库,其组织成动态调控、高度可及的染色质簇。然而,与其他基因组简化的动物不同,蠕虫双旋异毛蚓显示出显著简化的组蛋白库,这表明基因组压缩对基于组蛋白的调控具有谱系特异性影响。值得注意的是,环节动物纺锤欧文蚓有两种在其他动物中共存的H2A.X变体,有时与快速细胞分裂相关,并且代表了真核生物中组蛋白变体广泛平行进化的一个独特案例。组蛋白修饰酶复合体在环节动物中基本保守。然而,通过对纺锤欧文蚓和小头虫的定量质谱分析发现,一组减少的组蛋白修饰因子表达的时间差异与不同的个体发育特征以及组蛋白翻译后修饰的成年图谱变化相关。
我们对非模式门内基于组蛋白的表观遗传学的分析为基于组蛋白的调控的进化提供了信息,提出了一个框架来探索这个基本的基因组调控层如何普遍促进环节动物和动物的发育和形态多样化。