Hamilton Brenden W, Steele Brad A, Sakano Michael N, Kroonblawd Matthew P, Kuo I-Feng W, Strachan Alejandro
School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States.
Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.
J Phys Chem A. 2021 Mar 4;125(8):1766-1777. doi: 10.1021/acs.jpca.0c10946. Epub 2021 Feb 22.
2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105) is a relatively new and promising insensitive high-explosive (IHE) material that remains only partially characterized. IHEs are of interest for a range of applications and from a fundamental science standpoint, as the root causes behind insensitivity are poorly understood. We adopt a multitheory approach based on reactive molecular dynamic simulations performed with density functional theory, density functional tight-binding, and reactive force fields to characterize the reaction pathways, product speciation, reaction kinetics, and detonation performance of LLM-105. We compare and contrast these predictions to 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), a prototypical IHE, and 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane (HMX), a more sensitive and higher performance material. The combination of different predictive models allows access to processes operative on progressively longer timescales while providing benchmarks for assessing uncertainties in the predictions. We find that the early reaction pathways of LLM-105 decomposition are extremely similar to TATB; they involve intra- and intermolecular hydrogen transfer. Additionally, the detonation performance of LLM-105 falls between that of TATB and HMX. We find agreement between predictive models for first-step reaction pathways but significant differences in final product formations. Predictions of detonation performance result in a wide range of values, and one-step kinetic parameters show the similar reaction rates at high temperatures for three out of four models considered.
2,6-二氨基-3,5-二硝基吡嗪-1-氧化物(LLM-105)是一种相对新型且有前景的钝感高能炸药(IHE)材料,目前仅得到部分表征。IHEs因一系列应用而受到关注,并且从基础科学的角度来看,由于对钝感背后的根本原因了解不足。我们采用基于密度泛函理论、密度泛函紧束缚和反应力场进行的反应分子动力学模拟的多理论方法,来表征LLM-105的反应途径、产物形态、反应动力学和爆轰性能。我们将这些预测结果与典型的IHE 1,3,5-三氨基-2,4,6-三硝基苯(TATB)以及更敏感且性能更高的材料1,3,5,7-四硝基-1,3,5,7-四氮杂环辛烷(HMX)进行比较和对比。不同预测模型的结合使得能够了解在逐渐更长的时间尺度上起作用的过程,同时为评估预测中的不确定性提供基准。我们发现LLM-105分解的早期反应途径与TATB极为相似;它们涉及分子内和分子间的氢转移。此外,LLM-105的爆轰性能介于TATB和HMX之间。我们发现第一步反应途径的预测模型之间存在一致性,但最终产物形成存在显著差异。爆轰性能的预测结果有很大范围的值,并且在所考虑的四个模型中的三个中,一步动力学参数在高温下显示出相似的反应速率。