Suppr超能文献

基于LLM-105的冲击炸药细观热机械点火行为的计算分析

Computational analysis of mesoscale thermomechanical ignition behavior of impacted LLM-105 based explosives.

作者信息

Wang XinJie, Hu WeiJia, Wu YanQing, Huang FengLei

机构信息

State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology Beijing 100081 P. R. China

出版信息

RSC Adv. 2019 May 22;9(28):16095-16105. doi: 10.1039/c9ra02335f. eCollection 2019 May 20.

Abstract

LLM-105 (2,6-diamino-3,5-dinitropyrazine-1-oxide) is an insensitive high explosive crystal which has performance between that of HMX and TATB. An elastoviscoplastic dislocation model is developed for LLM-105 crystal, which accounts for the dislocation evolutions at the crystal interior and crystal wall and strain-rate dependent work hardening. Three different crystal morphology (cubic, icosahedral, rodlike) of LLM-105 based explosive computational models were constructed and subjected to an impact velocity of 200 m s and 500 m s. Effects of crystal morphology and initial dislocation density on thermomechanical ignition behavior of LLM-105 based explosives were analyzed. Dislocation density of both crystal interiors and crystal walls in the rodlike LLM-105 based explosive increases slower than that in the cubic and icosahedral explosives. Both the volume averaged and localized stress and dislocation density are the lowest for the rodlike explosive. At the impact velocity of 500 m s, a temperature rise due to volumetric work, plasticity work and chemical reaction is sufficiently high to lead to the ignition of the cubic explosive, which shows that the rodlike explosive is the least sensitive among the three explosives. Moreover, with the increase of initial dislocation density, the corresponding volume averaged and localized stress and temperature increase as well. Results presented bridge the macroscale thermomechanical ignition response with the mesoscale deformation mechanisms, which is essential for better understanding the ignition mechanisms and guiding the design of LLM-105 based formulations.

摘要

LLM - 105(2,6 - 二氨基 - 3,5 - 二硝基吡嗪 - 1 - 氧化物)是一种钝感高能炸药晶体,其性能介于奥克托今(HMX)和三氨基三硝基苯(TATB)之间。针对LLM - 105晶体建立了弹粘塑性位错模型,该模型考虑了晶体内部和晶体壁处的位错演化以及应变率相关的加工硬化。构建了基于LLM - 105的三种不同晶体形态(立方、二十面体、棒状)的炸药计算模型,并使其承受200米/秒和500米/秒的冲击速度。分析了晶体形态和初始位错密度对基于LLM - 105的炸药热机械点火行为的影响。基于棒状LLM - 105的炸药中,晶体内部和晶体壁的位错密度增长速度比立方和二十面体炸药中的慢。棒状炸药的体积平均应力、局部应力和位错密度均为最低。在500米/秒的冲击速度下,由于体积功、塑性功和化学反应导致的温度升高足以使立方炸药点火,这表明棒状炸药在这三种炸药中最不敏感。此外,随着初始位错密度的增加,相应的体积平均应力、局部应力和温度也会增加。本文的研究结果将宏观尺度的热机械点火响应与细观尺度的变形机制联系起来,这对于更好地理解点火机制和指导基于LLM - 105的配方设计至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffd9/9064355/29aeaea59e4b/c9ra02335f-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验