Stahl Berenike, Bredow Thomas
Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115, Bonn, Germany.
MPI for chemical energy conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, Germany.
Chemphyschem. 2021 May 17;22(10):1018-1026. doi: 10.1002/cphc.202000969. Epub 2021 May 4.
Vanadium dioxide is an interesting and frequently applied material due to its metal-insulator phase transition. However, there are only few studies of the catalytic activity and surface properties of different VO polymorphs. Therefore, we investigated the properties of the surfaces of the most stable VO phases theoretically at density-functional theory level using a self-consistent hybrid functional which has demonstrated its accuracy for the prediction of structural, electronic and energetic properties in a previous study. We found that the surfaces of the rutile R phase of VO are not stable and show a spontaneous phase transition to the monoclinic M phase. Doping with Mo stabilizes the surfaces with rutile structure even for small dopant concentrations (6.25 %). Both M and R surfaces strongly relax, with and without doping. In particular the metal-metal distances in the uppermost layers change by up to 0.4 Å. Mo segregates in the topmost layer of both R and M phases. The electronic structure is only slightly changed upon doping.
二氧化钒因其金属-绝缘体相变而成为一种有趣且应用频繁的材料。然而,针对不同VO多晶型物的催化活性和表面性质的研究却很少。因此,我们在密度泛函理论水平上,使用一种自洽杂化泛函从理论上研究了最稳定VO相的表面性质,该泛函在先前的研究中已证明其在预测结构、电子和能量性质方面的准确性。我们发现VO的金红石R相表面不稳定,会自发转变为单斜M相。即使掺杂浓度很小(6.25%),用Mo掺杂也能使具有金红石结构的表面稳定下来。无论是否掺杂,M相和R相的表面都会强烈弛豫。特别是最上层的金属-金属距离变化可达0.4 Å。Mo在R相和M相的最顶层都会发生偏析。掺杂后电子结构仅略有变化。