Department of Statistics, University of Haifa, Haifa, Israel
The Faculty of Industrial Engineering and Management, Technion Israel Institute of Technology, Haifa, Israel.
Evid Based Ment Health. 2021 Nov;24(4):131-136. doi: 10.1136/ebmental-2020-300232. Epub 2021 Feb 22.
We aim to explain the unadjusted, adjusted and marginal number needed to treat (NNT) and provide software for clinicians to compute them.
The NNT is an efficacy index that is commonly used in randomised clinical trials. The NNT is the average number of patients needed to treat to obtain one successful outcome (ie, response) due to treatment. We developed the nntcalc R package for desktop use and extended it to a user-friendly web application. We provided users with a user-friendly step-by-step guide. The application calculates the NNT for various models with and without explanatory variables. The implemented models for the adjusted NNT are linear regression and analysis of variance (ANOVA), logistic regression, Kaplan-Meier and Cox regression. If no explanatory variables are available, one can compute the unadjusted Laupacis 's NNT, Kraemer and Kupfer's NNT and the Furukawa and Leucht's NNT. All NNT estimators are computed with their associated appropriate 95% confidence intervals. All calculations are in R and are replicable.
The application provides the user with an easy-to-use web application to compute the NNT in different settings and models. We illustrate the use of the application from examples in schizophrenia research based on the Positive and Negative Syndrome Scale. The application is available from https://nntcalc.iem.technion.ac.il. The output is given in a journal compatible text format, which users can copy and paste or download in a comma-separated values format.
This application will help researchers and clinicians assess the efficacy of treatment and consequently improve the quality and accuracy of decisions.
我们旨在解释未经调整、调整后和边际需要治疗人数(NNT),并为临床医生提供计算这些指标的软件。
NNT 是一种常用于随机临床试验的疗效指标。NNT 是指由于治疗而获得一个成功结果(即反应)所需治疗的平均患者人数。我们开发了 nntcalc R 包用于桌面使用,并将其扩展为用户友好的网络应用程序。我们为用户提供了一个用户友好的逐步指南。该应用程序可计算具有和不具有解释变量的各种模型的 NNT。调整后的 NNT 的实现模型是线性回归和方差分析(ANOVA)、逻辑回归、Kaplan-Meier 和 Cox 回归。如果没有解释变量,则可以计算未经调整的 Laupacis'NNT、Kraemer 和 Kupfer 的 NNT 和 Furukawa 和 Leucht 的 NNT。所有 NNT 估计值均与其相关的适当 95%置信区间一起计算。所有计算均在 R 中进行,可复制。
该应用程序为用户提供了一个易于使用的网络应用程序,可在不同的设置和模型中计算 NNT。我们基于阳性和阴性症状量表(Positive and Negative Syndrome Scale),从精神分裂症研究的示例中说明了应用程序的使用。该应用程序可从 https://nntcalc.iem.technion.ac.il 获取。输出以兼容期刊的文本格式给出,用户可以复制并粘贴或下载逗号分隔值格式。
该应用程序将帮助研究人员和临床医生评估治疗效果,从而提高决策的质量和准确性。