Suppr超能文献

调整回归和生存分析中解释变量的需要治疗人数:理论与应用。

The number needed to treat adjusted for explanatory variables in regression and survival analysis: Theory and application.

机构信息

Department of Statistics, University of Haifa, Haifa, Israel.

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.

出版信息

Stat Med. 2022 Jul 30;41(17):3299-3320. doi: 10.1002/sim.9418. Epub 2022 Apr 26.

Abstract

The number needed to treat (NNT) is an efficacy index commonly used in randomized clinical trials. The NNT is the average number of treated patients for each undesirable patient outcome, for example, death, prevented by the treatment. We introduce a systematic theoretically-based framework to model and estimate the conditional and the harmonic mean NNT in the presence of explanatory variables, in various models with dichotomous and nondichotomous outcomes. The conditional NNT is illustrated in a series of four primary examples; logistic regression, linear regression, Kaplan-Meier estimation, and Cox regression models. Also, we establish and prove mathematically the exact relationship between the conditional and the harmonic mean NNT in the presence of explanatory variables. We introduce four different methods to calculate asymptotically-correct confidence intervals for both indices. Finally, we implemented a simulation study to provide numerical demonstrations of the aforementioned theoretical results and the four examples. Numerical analysis showed that the parametric estimators of the NNT with nonparametric bootstrap-based confidence intervals outperformed other examined combinations in most settings. An R package and a web application have been developed and made available online to calculate the conditional and the harmonic mean NNTs with their corresponding confidence intervals.

摘要

需要治疗的人数(NNT)是随机临床试验中常用的疗效指标。NNT 是指每个不良患者结局(例如治疗预防的死亡)所需治疗患者的平均数量。我们引入了一个系统的理论基础框架,用于在存在解释变量的情况下对条件和调和均值 NNT 进行建模和估计,包括二项和多项结局的各种模型。在一系列四个主要示例中说明了条件 NNT;逻辑回归、线性回归、Kaplan-Meier 估计和 Cox 回归模型。此外,我们还建立并证明了在存在解释变量的情况下,条件和调和均值 NNT 之间的确切关系。我们引入了四种不同的方法来计算这两个指标的渐近正确置信区间。最后,我们进行了模拟研究,以提供上述理论结果和四个示例的数值演示。数值分析表明,在大多数情况下,具有非参数引导置信区间的 NNT 参数估计优于其他检查组合。已经开发并在线提供了一个 R 包和一个网络应用程序,以计算条件和调和均值 NNT 及其相应的置信区间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1a7/9540555/455190ffdffa/SIM-41-3299-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验