Medical Physics Unit, Department of Oncology, McGill University, Montreal, QC, Canada.
Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA.
Med Phys. 2021 May;48(5):2604-2613. doi: 10.1002/mp.14802. Epub 2021 Mar 17.
The purpose of this study was to evaluate the impact of dose reporting schemes and tissue/applicator heterogeneities for Ir-, Se-, and Yb-based MRI-guided conventional and intensity-modulated brachytherapy.
Treatment plans using a variety of dose reporting and tissue/applicator segmentation schemes were generated for a cohort (n = 10) of cervical cancer patients treated with Ir-based Venezia brachytherapy. Dose calculations were performed using RapidBrachyMCTPS, a Geant4-based research Monte Carlo treatment planning system. Ultimately, five dose calculation scenarios were evaluated: (a) dose to water in water (D ); (b) D taking the applicator material into consideration (D ); (c) dose to water in medium (D ); (d and e) dose to medium in medium with mass densities assigned either nominally per structure (D ) or voxel-by-voxel (D ).
Ignoring the plastic Venezia applicator (D ) overestimates D by up to 1% (average) with high energy source ( Ir and Se) and up to 2% with Yb. Scoring dose to water (D or D ) generally overestimates dose and this effect increases with decreasing photon energy. Reporting dose other than D (or D ) for Yb-based conventional and intensity-modulated brachytherapy leads to a simultaneous overestimation (up to 4%) of CTV D and underestimation (up to 2%) of bladder D due to a significant dip in the mass-energy absorption ratios at the depths of nearby targets and OARs. Using a nominal mass-density assignment per structure, rather than a CT-derived voxel-by-voxel assignment for MRI-guided brachytherapy, amounts to a dose error up to 1% for all radionuclides considered.
The effects of the considered dose reporting schemes trend correspondingly between conventional and intensity-modulated brachytherapy. In the absence of CT-derived mass densities, MRI-only-based dosimetry can adequately approximate D by assigning nominal mass densities to structures. Tissue and applicator heterogeneities do not significantly impact dosimetry for Ir and Se, but do for Yb; dose reporting must be explicitly defined since D and D may overstate the dosimetric benefits.
本研究旨在评估剂量报告方案和组织/施源器异质性对基于 Ir、Se 和 Yb 的 MRI 引导常规和强度调制近距离治疗的影响。
为 10 例接受基于 Ir 的威尼斯近距离治疗的宫颈癌患者生成了各种剂量报告和组织/施源器分割方案的治疗计划。使用 RapidBrachyMCTPS(基于 Geant4 的研究蒙特卡罗治疗计划系统)进行剂量计算。最终,评估了五种剂量计算方案:(a)水中剂量(D);(b)考虑施源器材料的 D(D);(c)介质中的剂量(D);(d 和 e)介质中的剂量,介质中的密度分别按结构名义分配(D)或体素分配(D)。
忽略塑料威尼斯施源器(D)会导致高能源(Ir 和 Se)下 D 高估高达 1%(平均),而 Yb 下高估高达 2%。对水进行评分(D 或 D)通常会高估剂量,这种效应随着光子能量的降低而增加。对于基于 Yb 的常规和强度调制近距离治疗,报告除 D(或 D)以外的剂量会导致 CTV D 的同时高估(高达 4%)和膀胱 D 的低估(高达 2%),这是由于在附近靶区和 OARs 的深度处质量-能量吸收比出现显著下降。对于 MRI 引导近距离治疗,使用结构名义密度分配而不是 CT 衍生的体素分配,会导致所有考虑的放射性核素的剂量误差高达 1%。
考虑的剂量报告方案的影响在常规和强度调制近距离治疗之间相应。在没有 CT 衍生的质量密度的情况下,通过向结构分配名义质量密度,MRI 仅基于的剂量测定可以充分近似 D。组织和施源器异质性对 Ir 和 Se 的剂量测定影响不大,但对 Yb 的影响较大;必须明确定义剂量报告,因为 D 和 D 可能夸大剂量效益。