Suppr超能文献

室温下的巨太赫兹光响应:II型狄拉克费米子学的一个特征

Colossal Terahertz Photoresponse at Room Temperature: A Signature of Type-II Dirac Fermiology.

作者信息

Xu Huang, Fei Fucong, Chen Zhiqingzi, Bo Xiangyan, Sun Zhe, Wan Xiangang, Han Li, Wang Lin, Zhang Kaixuan, Zhang Jiazhen, Chen Gang, Liu Changlong, Guo Wanlong, Yang Luhan, Wei Dacheng, Song Fengqi, Chen Xiaoshuang, Lu Wei

机构信息

State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai 200083, China.

University of Chinese Academy of Sciences, No. 19A Yu-quan Road, Beijing 100049, China.

出版信息

ACS Nano. 2021 Mar 23;15(3):5138-5146. doi: 10.1021/acsnano.0c10304. Epub 2021 Feb 23.

Abstract

The discovery of Dirac semimetal has stimulated bourgeoning interests for exploring exotic quantum-transport phenomena, holding great promise for manipulating the performance of photoelectric devices that are related to nontrivial band topology. Nevertheless, it still remains elusive on both the device implementation and immediate results, with some enhanced or technically applicable electronic properties signified by the Dirac fermiology. By means of Pt doping, a type-II Dirac semimetal IrPtTe with protected crystal structure and tunable Fermi level has been achieved in this work. It has been envisioned that the metal-semimetal-metal device exhibits an order of magnitude performance improvement at terahertz frequency when the Fermi level is aligned with the Dirac node (, ∼ 0.3) and a room-temperature photoresponsivity of 0.52 A·W at 0.12 THz and 0.45 A·W at 0.3 THz, which benefited from the excitation of type-II Dirac fermions. Furthermore, van der Waals integration with Dirac semimetals exhibits superb performance with noise equivalent power less than 24 pW·Hz, rivaling the state-of-the-art detectors. Our work provides a route to explore the nontrivial topology of Dirac semimetal for addressing targeted applications in imaging and biomedical sensing across a terahertz gap.

摘要

狄拉克半金属的发现激发了人们对探索奇异量子输运现象的浓厚兴趣,有望用于操控与非平凡能带拓扑相关的光电器件性能。然而,在器件实现和直接成果方面仍难以捉摸,狄拉克费米子学仅表明了一些增强的或技术上可应用的电子特性。通过铂掺杂,在这项工作中实现了具有受保护晶体结构和可调费米能级的II型狄拉克半金属IrPtTe。据设想,当费米能级与狄拉克节点对齐(,~0.3)时,金属 - 半金属 - 金属器件在太赫兹频率下表现出一个数量级的性能提升,在0.12太赫兹时室温光响应度为0.52 A·W,在0.3太赫兹时为0.45 A·W,这得益于II型狄拉克费米子的激发。此外,与狄拉克半金属的范德华集成表现出卓越性能,噪声等效功率小于24 pW·Hz,可与最先进的探测器相媲美。我们的工作提供了一条探索狄拉克半金属非平凡拓扑的途径,以解决跨越太赫兹间隙在成像和生物医学传感方面的目标应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验