Wang Lin, Han Li, Guo Wanlong, Zhang Libo, Yao Chenyu, Chen Zhiqingzi, Chen Yulu, Guo Cheng, Zhang Kaixuan, Kuo Chia-Nung, Lue Chin Shan, Politano Antonio, Xing Huaizhong, Jiang Mengjie, Yu Xianbin, Chen Xiaoshuang, Lu Wei
State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-tian Road, Shanghai, 200083, China.
Department of Optoelectronic Science and Engineering, Donghua University, Shanghai, 201620, China.
Light Sci Appl. 2022 Mar 10;11(1):53. doi: 10.1038/s41377-022-00741-8.
Despite the considerable effort, fast and highly sensitive photodetection is not widely available at the low-photon-energy range (~meV) of the electromagnetic spectrum, owing to the challenging light funneling into small active areas with efficient conversion into an electrical signal. Here, we provide an alternative strategy by efficiently integrating and manipulating at the nanoscale the optoelectronic properties of topological Dirac semimetal PtSe and its van der Waals heterostructures. Explicitly, we realize strong plasmonic antenna coupling to semimetal states near the skin-depth regime (λ/10), featuring colossal photoresponse by in-plane symmetry breaking. The observed spontaneous and polarization-sensitive photocurrent are correlated to strong coupling with the nonequilibrium states in PtSe Dirac semimetal, yielding efficient light absorption in the photon range below 1.24 meV with responsivity exceeding ∼0.2 A/W and noise-equivalent power (NEP) less than ~38 pW/Hz, as well as superb ambient stability. Present results pave the way to efficient engineering of a topological semimetal for high-speed and low-energy photon harvesting in areas such as biomedical imaging, remote sensing or security applications.
尽管付出了巨大努力,但由于难以将光有效地引入小的有源区域并高效转换为电信号,在电磁频谱的低光子能量范围(毫电子伏特)内,快速且高灵敏度的光探测尚未广泛应用。在此,我们通过在纳米尺度上有效整合和操控拓扑狄拉克半金属PtSe及其范德华异质结构的光电特性,提供了一种替代策略。具体而言,我们实现了强等离子体天线与趋肤深度区域(λ/10)附近的半金属态的耦合,通过面内对称性破缺呈现出巨大的光响应。观察到的自发且对偏振敏感的光电流与PtSe狄拉克半金属中与非平衡态的强耦合相关,在低于1.24毫电子伏特的光子范围内实现了高效光吸收,响应度超过0.2 A/W,噪声等效功率(NEP)小于~38 pW/Hz,并且具有出色的环境稳定性。目前的结果为拓扑半金属的高效工程设计铺平了道路,可用于生物医学成像、遥感或安全应用等领域的高速和低能量光子采集。