School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK.
BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK; Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
J Inorg Biochem. 2021 Apr;217:111370. doi: 10.1016/j.jinorgbio.2021.111370. Epub 2021 Feb 12.
The design and construction of de novo enzymes offer potentially facile routes to exploiting powerful chemistries in robust, expressible and customisable protein frameworks, while providing insight into natural enzyme function. To this end, we have recently demonstrated extensive catalytic promiscuity in a heme-containing de novo protein, C45. The diverse transformations that C45 catalyses include substrate oxidation, dehalogenation and carbon‑carbon bond formation. Here we explore the substrate promiscuity of C45's peroxidase activity, screening the de novo enzyme against a panel of peroxidase and dehaloperoxidase substrates. Consistent with the function of natural peroxidases, C45 exhibits a broad spectrum of substrate activities with selectivity dictated primarily by the redox potential of the substrate, and by extension, the active oxidising species in peroxidase chemistry, compounds I and II. Though the comparison of these redox potentials provides a threshold for determining activity for a given substrate, substrate:protein interactions are also likely to play a significant role in determining electron transfer rates from substrate to heme, affecting the kinetic parameters of the enzyme. We also used biomolecular simulation to screen substrates against a computational model of C45 to identify potential interactions and binding sites. Several sites of interest in close proximity to the heme cofactor were discovered, providing insight into the catalytic workings of C45.
从头设计和构建酶为利用强大的化学性质提供了潜在的简易途径,这些化学性质存在于坚固、可表达和可定制的蛋白质框架中,同时还可以深入了解天然酶的功能。为此,我们最近在一种含有血红素的从头蛋白质 C45 中证明了广泛的催化多功能性。C45 催化的各种转化包括底物氧化、脱卤和碳-碳键形成。在这里,我们探索了 C45 过氧化物酶活性的底物多功能性,用一组过氧化物酶和脱卤过氧化物酶底物对新型酶进行筛选。与天然过氧化物酶的功能一致,C45 表现出广泛的底物活性,选择性主要由底物的氧化还原电位决定,进而由过氧化物酶化学中的活性氧化物种 I 和 II 决定。虽然这些氧化还原电位的比较为确定给定底物的活性提供了一个阈值,但底物-蛋白质相互作用也可能在确定从底物到血红素的电子转移速率方面发挥重要作用,从而影响酶的动力学参数。我们还使用生物分子模拟来筛选与 C45 计算模型相对应的底物,以确定潜在的相互作用和结合位点。在血红素辅因子附近发现了几个有趣的位点,为了解 C45 的催化作用提供了线索。