文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MRI 和 CT 对单发肝细胞癌微血管侵犯预测的比较:非影像组学和影像组学方法,哪种成像方式更好?

Comparison of MRI and CT for the Prediction of Microvascular Invasion in Solitary Hepatocellular Carcinoma Based on a Non-Radiomics and Radiomics Method: Which Imaging Modality Is Better?

机构信息

Department of Radiology, Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School of Southeast University, Nanjing, China.

Department of Pathology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China.

出版信息

J Magn Reson Imaging. 2021 Aug;54(2):526-536. doi: 10.1002/jmri.27575. Epub 2021 Feb 23.


DOI:10.1002/jmri.27575
PMID:33622022
Abstract

BACKGROUND: Computed tomography (CT) and magnetic resonance imaging (MRI) are both capable of predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC). However, which modality is better is unknown. PURPOSE: To intraindividually compare CT and MRI for predicting MVI in solitary HCC and investigate the added value of radiomics analyses. STUDY TYPE: Retrospective. SUBJECTS: Included were 402 consecutive patients with HCC (training set:validation set = 300:102). FIELD STRENGTH/SEQUENCE: T2-weighted, diffusion-weighted, and contrast-enhanced T1-weighted imaging MRI at 3.0T and contrast-enhanced CT. ASSESSMENT: CT- and MR-based radiomics signatures (RS) were constructed using the least absolute shrinkage and selection operator regression. CT- and MR-based radiologic (R) and radiologic-radiomics (RR) models were developed by univariate and multivariate logistic regression. The performance of the RS/models was compared between two modalities. To investigate the added value of RS, the performance of the R models was compared with the RR models in HCC of all sizes and 2-5 cm in size. STATISTICAL TESTS: Model performance was quantified by the area under the receiver operating characteristic curve (AUC) and compared using the Delong test. RESULTS: Histopathologic MVI was identified in 161 patients (training set:validation set = 130:31). MRI-based RS/models tended to have a marginally higher AUC than CT-based RS/models (AUCs of CT vs. MRI, P: RS, 0.801 vs. 0.804, 0.96; R model, 0.809 vs. 0.832, 0.09; RR model, 0.835 vs. 0.872, 0.54). The improvement of RR models over R models in all sizes was not significant (P = 0.21 at CT and 0.09 at MRI), whereas the improvement in 2-5 cm was significant at MRI (P < 0.05) but not at CT (P = 0.16). DATA CONCLUSION: CT and MRI had a comparable predictive performance for MVI in solitary HCC. The RS of MRI only had significant added value for predicting MVI in HCC of 2-5 cm. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

摘要

背景:计算机断层扫描(CT)和磁共振成像(MRI)均能预测肝细胞癌(HCC)的微血管侵犯(MVI)。然而,哪种方法更好尚不清楚。

目的:旨在对 CT 和 MRI 预测单发 HCC 中的 MVI 进行个体内比较,并探讨影像组学分析的附加价值。

研究类型:回顾性。

受试者:纳入了 402 例连续 HCC 患者(训练集:验证集=300:102)。

磁场强度/序列:3.0T 下的 T2 加权、弥散加权和对比增强 T1 加权成像 MRI 以及对比增强 CT。

评估:使用最小绝对收缩和选择算子回归构建 CT 和 MRI 基于的影像组学特征(RS)。通过单变量和多变量逻辑回归构建 CT 和 MRI 基于的放射学(R)和放射学-影像组学(RR)模型。比较两种模态之间 RS/模型的性能。为了研究 RS 的附加价值,比较了大小为所有 HCC 和 2-5cm 的 HCC 的 R 模型与 RR 模型的性能。

统计检验:通过受试者工作特征曲线下的面积(AUC)定量评估模型性能,并使用 Delong 检验进行比较。

结果:在 161 例患者(训练集:验证集=130:31)中发现了组织病理学 MVI。MRI 基于的 RS/模型的 AUC 倾向于略高于 CT 基于的 RS/模型(CT 与 MRI 的 AUC,P:RS,0.801 与 0.804,0.96;R 模型,0.809 与 0.832,0.09;RR 模型,0.835 与 0.872,0.54)。RR 模型相对于 R 模型在所有大小中的改进不显著(CT 时为 P=0.21,MRI 时为 P=0.09),而在 2-5cm 时的改进在 MRI 中显著(P<0.05),但在 CT 中不显著(P=0.16)。

数据结论:CT 和 MRI 对单发 HCC 中的 MVI 具有相当的预测性能。MRI 的 RS 仅对预测 2-5cm HCC 的 MVI 具有显著的附加价值。

证据水平:3 级 技术功效:2 级

相似文献

[1]
Comparison of MRI and CT for the Prediction of Microvascular Invasion in Solitary Hepatocellular Carcinoma Based on a Non-Radiomics and Radiomics Method: Which Imaging Modality Is Better?

J Magn Reson Imaging. 2021-8

[2]
Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma.

J Hepatol. 2019-3-13

[3]
Prediction of microvascular invasion in hepatocellular carcinoma patients with MRI radiomics based on susceptibility weighted imaging and T2-weighted imaging.

Radiol Med. 2024-8

[4]
Preoperative Evaluation of Gd-EOB-DTPA-Enhanced MRI Radiomics-Based Nomogram in Small Solitary Hepatocellular Carcinoma (≤3 cm) With Microvascular Invasion: A Two-Center Study.

J Magn Reson Imaging. 2022-11

[5]
Prediction of microvascular invasion in solitary hepatocellular carcinoma ≤ 5 cm based on computed tomography radiomics.

World J Gastroenterol. 2021-5-7

[6]
The Value of LI-RADS and Radiomic Features from MRI for Predicting Microvascular Invasion in Hepatocellular Carcinoma within 5 cm.

Acad Radiol. 2024-6

[7]
Multi-scale and multi-parametric radiomics of gadoxetate disodium-enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma ≤ 5 cm.

Eur Radiol. 2021-7

[8]
MRI-based clinical-radiomics nomogram model for predicting microvascular invasion in hepatocellular carcinoma.

Med Phys. 2024-7

[9]
Considerable effects of imaging sequences, feature extraction, feature selection, and classifiers on radiomics-based prediction of microvascular invasion in hepatocellular carcinoma using magnetic resonance imaging.

Quant Imaging Med Surg. 2021-5

[10]
Preoperative Gadoxetic Acid-Enhanced MRI Features for Evaluation of Vessels Encapsulating Tumor Clusters and Microvascular Invasion in Hepatocellular Carcinoma: Creating Nomograms for Risk Assessment.

J Magn Reson Imaging. 2024-9

引用本文的文献

[1]
Multiphase MRI radiomics model for predicting microvascular invasion in HCC: Development and clinical validation.

ILIVER. 2025-4-26

[2]
Radiomics and clinicoradiological factors as a promising approach for predicting microvascular invasion in hepatitis B-related hepatocellular carcinoma.

World J Gastroenterol. 2025-3-21

[3]
Research progress of MRI-based radiomics in hepatocellular carcinoma.

Front Oncol. 2025-2-6

[4]
Predictive value of a constructed artificial neural network model for microvascular invasion in hepatocellular carcinoma: A retrospective study.

World J Gastrointest Oncol. 2025-1-15

[5]
Evaluating microvascular invasion in hepatitis B virus-related hepatocellular carcinoma based on contrast-enhanced computed tomography radiomics and clinicoradiological factors.

World J Gastroenterol. 2024-12-7

[6]
Ultrasound-based deep learning radiomics nomogram for differentiating mass mastitis from invasive breast cancer.

BMC Med Imaging. 2024-7-26

[7]
Radiomics analysis based on contrast-enhanced MRI for predicting short-term efficacy of drug-eluting beads transarterial chemoembolization in hepatocellular carcinoma.

Abdom Radiol (NY). 2024-7

[8]
Dual-energy computed tomography iodine quantification combined with laboratory data for predicting microvascular invasion in hepatocellular carcinoma: a two-centre study.

Br J Radiol. 2024-8-1

[9]
Preoperative prediction of microvascular invasion classification in hepatocellular carcinoma based on clinical features and MRI parameters.

Oncol Lett. 2024-5-10

[10]
Current status of magnetic resonance imaging radiomics in hepatocellular carcinoma: A quantitative review with Radiomics Quality Score.

World J Gastroenterol. 2024-1-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索