Suppr超能文献

基于增强 CT 的影像组学分析预测肝细胞癌的微血管侵犯及预后

Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma.

机构信息

Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China.

Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China.

出版信息

J Hepatol. 2019 Jun;70(6):1133-1144. doi: 10.1016/j.jhep.2019.02.023. Epub 2019 Mar 13.

Abstract

BACKGROUND & AIMS: Microvascular invasion (MVI) impairs surgical outcomes in patients with hepatocellular carcinoma (HCC). As there is no single highly reliable factor to preoperatively predict MVI, we developed a computational approach integrating large-scale clinical and imaging modalities, especially radiomic features from contrast-enhanced CT, to predict MVI and clinical outcomes in patients with HCC.

METHODS

In total, 495 surgically resected patients were retrospectively included. MVI-related radiomic scores (R-scores) were built from 7,260 radiomic features in 6 target volumes. Six R-scores, 15 clinical factors, and 12 radiographic scores were integrated into a predictive model, the radiographic-radiomic (RR) model, with multivariate logistic regression.

RESULTS

Radiomics related to tumor size and intratumoral heterogeneity were the top-ranked MVI predicting features. The related R-scores showed significant differences according to MVI status (p <0.001). Regression analysis identified 8 MVI risk factors, including 5 radiographic features and an R-score. The R-score (odds ratio [OR] 2.34) was less important than tumor capsule (OR 5.12), tumor margin (OR4.20), and peritumoral enhancement (OR 3.03). The RR model using these predictors achieved an area under the curve (AUC) of 0.909 in training/validation and 0.889 in the test set. Progression-free survival (PFS) and overall survival (OS) were significantly different between the RR-predicted MVI-absent and MVI-present groups (median PFS: 49.5 vs. 12.9 months; median OS: 76.3 vs. 47.3 months). RR-computed MVI probability, histologic MVI, tumor size, and Edmondson-Steiner grade were independently associated with disease-specific recurrence and mortality.

CONCLUSIONS

The computational approach, integrating large-scale clinico-radiologic and radiomic features, demonstrates good performance for predicting MVI and clinical outcomes. However, radiomics with current CT imaging analysis protocols do not provide statistically significant added value to radiographic scores.

LAY SUMMARY

The most effective treatment for hepatocellular carcinoma (HCC) is surgical removal of the tumor but often recurrence occurs, partly due to the presence of microvascular invasion (MVI). Lacking a single highly reliable factor able to preoperatively predict MVI, we developed a computational approach to predict MVI and the long-term clinical outcome of patients with HCC. In particular, the added value of radiomics, a newly emerging form of radiography, was comprehensively investigated. This computational method can enhance the communication with the patient about the likely success of the treatment and guide clinical management, with the aim of finding drugs that reduce the risk of recurrence.

摘要

背景与目的

微血管侵犯(MVI)会损害肝细胞癌(HCC)患者的手术治疗效果。由于目前还没有一种单一的、高度可靠的因素可以术前预测 MVI,因此我们开发了一种计算方法,将大规模的临床和影像学模式(尤其是来自增强 CT 的放射组学特征)整合在一起,以预测 HCC 患者的 MVI 和临床结果。

方法

总共回顾性纳入了 495 例接受手术切除的患者。从 6 个靶区的 7260 个放射组学特征中构建了与 MVI 相关的放射组学评分(R-score)。6 个 R-score、15 个临床因素和 12 个影像学评分被整合到一个预测模型中,即放射学-放射组学(RR)模型,使用多元逻辑回归进行分析。

结果

与肿瘤大小和肿瘤内异质性相关的放射组学特征是预测 MVI 的最佳特征。与 MVI 状态相关的 R-score 存在显著差异(p<0.001)。回归分析确定了 8 个 MVI 风险因素,包括 5 个影像学特征和一个 R-score。R-score(比值比[OR]2.34)的重要性低于肿瘤包膜(OR 5.12)、肿瘤边缘(OR4.20)和肿瘤周围强化(OR 3.03)。使用这些预测因子的 RR 模型在训练/验证组中的曲线下面积(AUC)为 0.909,在测试组中的 AUC 为 0.889。RR 预测的 MVI 阴性和 MVI 阳性组的无进展生存率(PFS)和总生存率(OS)有显著差异(中位 PFS:49.5 与 12.9 个月;中位 OS:76.3 与 47.3 个月)。RR 计算的 MVI 概率、组织学 MVI、肿瘤大小和 Edmondson-Steiner 分级与疾病特异性复发和死亡率独立相关。

结论

该计算方法整合了大规模的临床影像学和放射组学特征,在预测 MVI 和临床结果方面表现良好。然而,目前 CT 成像分析方案中的放射组学并没有提供具有统计学意义的附加值。

意义

肝细胞癌(HCC)最有效的治疗方法是手术切除肿瘤,但往往会复发,部分原因是存在微血管侵犯(MVI)。由于缺乏一种能术前预测 MVI 的单一、高度可靠的因素,我们开发了一种计算方法来预测 HCC 患者的 MVI 和长期临床结果。特别是,全面研究了新兴的放射影像学形式——放射组学的附加价值。这种计算方法可以增强与患者关于治疗成功率的沟通,并指导临床管理,目的是找到降低复发风险的药物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验