Suppr超能文献

微小 RNA 作为前列腺癌患者微创诊断生物标志物的初步研究。

A preliminary study of micro-RNAs as minimally invasive biomarkers for the diagnosis of prostate cancer patients.

机构信息

University of Rome "Sapienza", Via di Grottarossa 1035, 00198, Rome, Italy.

Department of morphological surgery and experimental medicine, Università degli Studi, Via Fossato di Mortara 64b, 44121, Ferrara, Italy.

出版信息

J Exp Clin Cancer Res. 2021 Feb 23;40(1):79. doi: 10.1186/s13046-021-01875-0.

Abstract

BACKGROUND

A prostate cancer diagnosis is based on biopsy sampling that is an invasive, expensive procedure, and doesn't accurately represent multifocal disease.

METHODS

To establish a model using plasma miRs to distinguish Prostate cancer patients from non-cancer controls, we enrolled 600 patients histologically diagnosed as having or not prostate cancer at biopsy. Two hundred ninety patients were eligible for the analysis. Samples were randomly divided into discovery and validation cohorts.

RESULTS

NGS-miR-expression profiling revealed a miRs signature able to distinguish prostate cancer from non-cancer plasma samples. Of 51 miRs selected in the discovery cohort, we successfully validated 5 miRs (4732-3p, 98-5p, let-7a-5p, 26b-5p, and 21-5p) deregulated in prostate cancer samples compared to controls (p ≤ 0.05). Multivariate and ROC analyses show miR-26b-5p as a strong predictor of PCa, with an AUC of 0.89 (CI = 0.83-0.95;p < 0.001). Combining miRs 26b-5p and 98-5p, we developed a model that has the best predictive power in discriminating prostate cancer from non-cancer (AUC = 0.94; CI: 0,835-0,954). To distinguish between low and high-grade prostate cancer, we found that miR-4732-3p levels were significantly higher; instead, miR-26b-5p and miR-98-5p levels were lower in low-grade compared to the high-grade group (p ≤ 0.05). Combining miR-26b-5p and miR-4732-3p we have the highest diagnostic accuracy for high-grade prostate cancer patients, (AUC = 0.80; CI 0,69-0,873).

CONCLUSIONS

Noninvasive diagnostic tests may reduce the number of unnecessary prostate biopsies. The 2-miRs-diagnostic model (miR-26b-5p and miR-98-5p) and the 2-miRs-grade model (miR-26b-5p and miR-4732-3p) are promising minimally invasive tools in prostate cancer clinical management.

摘要

背景

前列腺癌的诊断基于活检采样,这是一种侵入性的、昂贵的程序,并且不能准确地代表多灶性疾病。

方法

为了建立一个使用血浆 mirs 来区分前列腺癌患者和非癌症对照的模型,我们招募了 600 名组织学诊断为前列腺癌或非癌症的患者进行活检。290 名患者符合分析条件。样本随机分为发现和验证队列。

结果

NGS-miR 表达谱分析显示,miRs 特征能够区分前列腺癌与非癌症血浆样本。在发现队列中选择的 51 个 mirs 中,我们成功验证了 5 个 mirs(4732-3p、98-5p、let-7a-5p、26b-5p 和 21-5p)在前列腺癌样本中与对照组相比下调(p≤0.05)。多变量和 ROC 分析显示 miR-26b-5p 是 PCa 的强预测因子,AUC 为 0.89(CI=0.83-0.95;p<0.001)。结合 mirs 26b-5p 和 98-5p,我们开发了一种模型,该模型在区分前列腺癌和非癌症方面具有最佳的预测能力(AUC=0.94;CI:0.835-0.954)。为了区分低级别和高级别前列腺癌,我们发现 miR-4732-3p 水平显著升高,而 miR-26b-5p 和 miR-98-5p 水平在低级别组中低于高级别组(p≤0.05)。结合 miR-26b-5p 和 miR-4732-3p,我们对高级别前列腺癌患者的诊断准确性最高,AUC=0.80(CI 0.69-0.873)。

结论

非侵入性诊断测试可能会减少不必要的前列腺活检数量。2-miRs 诊断模型(miR-26b-5p 和 miR-98-5p)和 2-miRs 分级模型(miR-26b-5p 和 miR-4732-3p)是前列腺癌临床管理中很有前途的微创工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d85/7903618/d4b18c8733fa/13046_2021_1875_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验