基于热力学理论评估微生物驱动的土壤有机质的数量和质量
Evaluation of Microbe-Driven Soil Organic Matter Quantity and Quality by Thermodynamic Theory.
作者信息
Zhang Jianwei, Feng Youzhi, Wu Meng, Chen Ruirui, Li Zhongpei, Lin Xiangui, Zhu Yongguan, Delgado-Baquerizo Manuel
机构信息
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
出版信息
mBio. 2021 Feb 23;12(1):e03252-20. doi: 10.1128/mBio.03252-20.
Microbial communities, coupled with substrate quality and availability, regulate the stock (formation versus mineralization) of soil organic matter (SOM) in terrestrial ecosystems. However, our understanding of how soil microbes interact with contrasting substrates influencing SOM quantity and quality is still very superficial. Here, we used thermodynamic theory principles and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) to evaluate the linkages between dissolved organic matter (DOM [organic substrates in soil that are readily available]), thermodynamic quality, and microbial communities. We investigated soils from subtropical paddy ecosystems across a 1,000-km gradient and comprising contrasting levels of SOM content and nutrient availability. Our region-scale study suggested that soils with a larger abundance of readily accessible resources (i.e., lower Gibbs free energy) supported higher levels of microbial diversity and higher SOM content. We further advocated a novel phylotype-level microbial classification based on their associations with OM quantities and qualities and identified two contrasting clusters of bacterial taxa: phylotypes that are highly positively correlated with thermodynamically favorable DOM and larger SOM content versus those which are associated with less-favorable DOM and lower SOM content. Both groups are expected to play critical roles in regulating SOM contents in the soil. By identifying the associations between microbial phylotypes of different life strategies and OM qualities and quantities, our study indicates that thermodynamic theory can act as a proxy for the relationship between OM and soil microbial communities and should be considered in models of soil organic matter preservation. Microbial communities are known to be important drivers of organic matter (OM) accumulation in terrestrial ecosystems. However, despite the importance of these soil microbes and processes, the mechanisms behind these microbial-SOM associations remain poorly understood. Here, we used the principles of thermodynamic theory and novel Fourier transform ion cyclotron resonance mass spectrometry techniques to investigate the links between microbial communities and dissolved OM (DOM) thermodynamic quality in soils across a 1,000-km gradient and comprising contrasting nutrient and C contents. Our region-scale study provided evidence that soils with a larger amount of readily accessible resources (i.e., lower Gibbs free energy) supported higher levels of microbial diversity and larger SOM content. Moreover, we created a novel phylotype-level microbial classification based on the associations between microbial taxa and DOM quantities and qualities. We found two contrasting clusters of bacterial taxa based on their level of association with thermodynamically favorable DOM and SOM content. Our study advances our knowledge on the important links between microbial communities and SOM. Moreover, by identifying the associations between microbial phylotypes of different life strategies and OM qualities and quantities, our study indicates that thermodynamic theory can act as a proxy for the relationship between OM and soil microbial communities. Together, our findings support that the association between microbial species taxa and substrate thermodynamic quality constituted an important complement explanation for soil organic matter preservation.
微生物群落与底物质量和可利用性共同调节陆地生态系统中土壤有机质(SOM)的储量(形成与矿化)。然而,我们对于土壤微生物如何与影响SOM数量和质量的不同底物相互作用的理解仍然非常肤浅。在此,我们运用热力学理论原理和傅里叶变换离子回旋共振质谱(FTICR-MS)来评估溶解有机物(DOM [土壤中易于利用的有机底物])、热力学质量和微生物群落之间的联系。我们调查了亚热带稻田生态系统中沿1000公里梯度分布且具有不同SOM含量和养分有效性水平的土壤。我们的区域尺度研究表明,具有更丰富易获取资源(即较低吉布斯自由能)的土壤支持更高水平的微生物多样性和更高的SOM含量。我们进一步倡导基于微生物与有机物质数量和质量的关联进行一种新的系统发育型水平的微生物分类,并鉴定出两类截然不同的细菌分类群:一类与热力学上有利的DOM和更高的SOM含量高度正相关,另一类则与不太有利的DOM和较低的SOM含量相关。预计这两组在调节土壤中SOM含量方面都将发挥关键作用。通过确定不同生活策略的微生物系统发育型与有机物质质量和数量之间的关联,我们的研究表明热力学理论可以作为有机物质与土壤微生物群落之间关系的一个替代指标,并且在土壤有机质保存模型中应予以考虑。已知微生物群落是陆地生态系统中有机物质(OM)积累的重要驱动因素。然而,尽管这些土壤微生物和过程很重要,但这些微生物与SOM关联背后的机制仍知之甚少。在此,我们运用热力学理论原理和新颖的傅里叶变换离子回旋共振质谱技术,研究了沿1000公里梯度分布且具有不同养分和碳含量的土壤中微生物群落与溶解有机物质(DOM)热力学质量之间的联系。我们的区域尺度研究提供了证据,表明具有更多易获取资源(即较低吉布斯自由能)的土壤支持更高水平的微生物多样性和更大的SOM含量。此外,我们基于微生物分类群与DOM数量和质量之间的关联创建了一种新的系统发育型水平的微生物分类。我们根据细菌分类群与热力学上有利的DOM和SOM含量的关联水平发现了两类截然不同的分类群。我们的研究推进了我们对微生物群落与SOM之间重要联系的认识。此外,通过确定不同生活策略的微生物系统发育型与有机物质质量和数量之间的关联,我们的研究表明热力学理论可以作为有机物质与土壤微生物群落之间关系的一个替代指标。总之,我们的研究结果支持微生物物种分类群与底物热力学质量之间的关联构成了对土壤有机质保存的一个重要补充解释。