Suppr超能文献

养分限制可能会促使微生物从持久性土壤有机质中挖掘资源。

Nutrient limitation may induce microbial mining for resources from persistent soil organic matter.

机构信息

Section of Microbial Ecology, Department of Biology, Lund University, Ecology Building, Lund, 223 62, Sweden.

Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, 97331, USA.

出版信息

Ecology. 2021 Jun;102(6):e03328. doi: 10.1002/ecy.3328. Epub 2021 May 3.

Abstract

Fungi and bacteria are the two principal microbial groups in soil, responsible for the breakdown of organic matter (OM). The relative contribution of fungi and bacteria to decomposition is thought to impact biogeochemical cycling at the ecosystem scale, whereby bacterially dominated decomposition supports the fast turnover of easily available substrates, whereas fungal-dominated decomposition leads to the slower turnover of more complex OM. However, empirical support for this is lacking. We used soils from a detritus input and removal treatment experiment in an old-growth coniferous forest, where above- and belowground litter inputs have been manipulated for 20 yr. These manipulations have generated variation in OM quality, as defined by energetic content and proxied as respiration per g soil organic matter (SOM) and the δ C signature in respired CO and microbial PLFAs. Respiration per g SOM reflects the availability and lability of C substrate to microorganisms, and the δ C signature indicates whether the C used by microorganisms is plant derived and higher quality (more δ C depleted) or more microbially processed and lower quality (more δ C enriched). Surprisingly, higher quality C did not disproportionately benefit bacterial decomposers. Both fungal and bacterial growth increased with C quality, with no systematic change in the fungal-to-bacterial growth ratio, reflecting the relative contribution of fungi and bacteria to decomposition. There was also no difference in the quality of C targeted by bacterial and fungal decomposers either for catabolism or anabolism. Interestingly, respired CO was more δ C enriched than soil C, suggesting preferential use of more microbially processed C, despite its lower quality. Gross N mineralization and consumption were also unaffected by differences in the ratio of fungal-to-bacterial growth. However, the ratio of C to gross N mineralization was lower than the average C/N of SOM, meaning that microorganisms specifically targeted N-rich components of OM, indicative of selective microbial N-mining. Consistent with the δ C data, this reinforces evidence for the use of more microbially processed OM with a lower C/N ratio, rather than plant-derived OM. These results challenge the widely held assumption that microorganisms favor high-quality C sources and suggest that there is a trade-off in OM use that may be related to the growth-limiting factor for microorganisms in the ecosystem.

摘要

真菌和细菌是土壤中主要的微生物群体,负责分解有机物 (OM)。真菌和细菌对分解的相对贡献被认为会影响生态系统尺度上的生物地球化学循环,其中细菌主导的分解支持易利用底物的快速周转,而真菌主导的分解导致更复杂的 OM 更缓慢的周转。然而,这方面的经验证据还很缺乏。我们使用了一个古老的针叶林凋落物输入和去除处理实验中的土壤,在这个实验中,地上和地下凋落物输入已经被人为操纵了 20 年。这些操纵导致了 OM 质量的变化,这可以通过能量含量来定义,并用每克土壤有机质 (SOM) 的呼吸速率和微生物 PLFA 中呼吸 CO 的 δ C 特征来表示。每克 SOM 的呼吸速率反映了微生物可用和易变的 C 底物的可用性,而 δ C 特征则表明微生物利用的 C 是植物源的且质量更高(更 δ C 贫化)还是更经过微生物处理的且质量更低(更 δ C 富集)。令人惊讶的是,高质量的 C 并没有不成比例地使细菌分解者受益。真菌和细菌的生长都随着 C 质量的增加而增加,真菌与细菌的生长比率没有系统变化,这反映了真菌和细菌对分解的相对贡献。细菌和真菌分解者在分解代谢或合成代谢中也没有对不同质量的 C 有偏好。有趣的是,呼吸 CO 的 δ C 比土壤 C 更富集,这表明尽管其质量较低,但微生物处理过的 C 被优先利用。总 N 矿化和消耗也不受真菌与细菌生长比率差异的影响。然而,C 与总 N 矿化的比率低于 SOM 的平均 C/N,这意味着微生物专门针对 OM 中富 N 的成分,表明微生物有选择性地挖掘 N。与 δ C 数据一致,这进一步证明了微生物使用具有较低 C/N 比的更经过微生物处理的 OM,而不是植物源 OM。这些结果挑战了微生物偏爱高质量 C 源的普遍假设,并表明在 OM 使用方面存在权衡,这可能与生态系统中微生物的生长限制因素有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验