Suppr超能文献

Microprocessor 复合物对核糖体蛋白合成的控制。

Control of ribosomal protein synthesis by the Microprocessor complex.

机构信息

Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.

Department of Medical Physiology, University Medical Center Utrecht, Utrecht, 3584 CM, Netherlands.

出版信息

Sci Signal. 2021 Feb 23;14(671):eabd2639. doi: 10.1126/scisignal.abd2639.

Abstract

Ribosome biogenesis in eukaryotes requires the coordinated production and assembly of 80 ribosomal proteins and four ribosomal RNAs (rRNAs), and its rate must be synchronized with cellular growth. Here, we showed that the Microprocessor complex, which mediates the first step of microRNA processing, potentiated the transcription of ribosomal protein genes by eliminating DNA/RNA hybrids known as R-loops. Nutrient deprivation triggered the nuclear export of Drosha, a key component of the Microprocessor complex, and its subsequent degradation by the E3 ubiquitin ligase Nedd4, thereby reducing ribosomal protein production and protein synthesis. In mouse erythroid progenitors, conditional deletion of led to the reduced production of ribosomal proteins, translational inhibition of the mRNA encoding the erythroid transcription factor Gata1, and impaired erythropoiesis. This phenotype mirrored the clinical presentation of human "ribosomopathies." Thus, the Microprocessor complex plays a pivotal role in synchronizing protein synthesis capacity with cellular growth rate and is a potential drug target for anemias caused by ribosomal insufficiency.

摘要

真核生物的核糖体生物发生需要协调 80 种核糖体蛋白和 4 种核糖体 RNA(rRNA)的产生和组装,其速度必须与细胞生长同步。在这里,我们表明,介导 microRNA 加工第一步的 Microprocessor 复合物通过消除称为 R 环的 DNA/RNA 杂交体来增强核糖体蛋白基因的转录。营养剥夺触发了 Microprocessor 复合物的关键组成部分 Drosha 的核输出,以及随后被 E3 泛素连接酶 Nedd4 降解,从而减少核糖体蛋白的产生和蛋白质合成。在小鼠红系祖细胞中,条件性缺失 导致核糖体蛋白产生减少,编码红系转录因子 Gata1 的 mRNA 翻译抑制,以及红细胞生成受损。这种表型与人类“核糖体病”的临床表现相似。因此,Microprocessor 复合物在协调蛋白质合成能力与细胞生长速率方面起着关键作用,是由核糖体不足引起的贫血的潜在药物靶点。

相似文献

3
mTORC1 signaling controls multiple steps in ribosome biogenesis.mTORC1信号传导控制核糖体生物合成的多个步骤。
Semin Cell Dev Biol. 2014 Dec;36:113-20. doi: 10.1016/j.semcdb.2014.08.004. Epub 2014 Aug 19.
5
Growth control and ribosomopathies.生长调控与核糖体病。
Curr Opin Genet Dev. 2013 Feb;23(1):63-71. doi: 10.1016/j.gde.2013.02.001. Epub 2013 Mar 13.
7
Ribosome assembly in eukaryotes.真核生物中的核糖体组装
Gene. 2003 Aug 14;313:17-42. doi: 10.1016/s0378-1119(03)00629-2.
9
Ribosomal heterogeneity - A new inroad for pharmacological innovation.核糖体异质性 - 药理学创新的新途径。
Biochem Pharmacol. 2020 May;175:113874. doi: 10.1016/j.bcp.2020.113874. Epub 2020 Feb 24.

本文引用的文献

2
The many substrates and functions of NEDD4-1.NEDD4-1 的多种底物和功能。
Cell Death Dis. 2019 Dec 2;10(12):904. doi: 10.1038/s41419-019-2142-8.
3
R Loops: From Physiological to Pathological Roles.R 环:从生理作用到病理作用。
Cell. 2019 Oct 17;179(3):604-618. doi: 10.1016/j.cell.2019.08.055. Epub 2019 Oct 10.
5
Introns are mediators of cell response to starvation.内含子是细胞对饥饿反应的中介。
Nature. 2019 Jan;565(7741):612-617. doi: 10.1038/s41586-018-0859-7. Epub 2019 Jan 16.
6
Excised linear introns regulate growth in yeast.切除线性内含子可调控酵母生长。
Nature. 2019 Jan;565(7741):606-611. doi: 10.1038/s41586-018-0828-1. Epub 2019 Jan 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验