Suppr超能文献

孟加拉国规划性结核病控制的情景分析:一项数学建模研究。

Scenario analysis for programmatic tuberculosis control in Bangladesh: a mathematical modelling study.

机构信息

Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.

College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia.

出版信息

Sci Rep. 2021 Feb 23;11(1):4354. doi: 10.1038/s41598-021-83768-y.

Abstract

Tuberculosis (TB) is a major public health problem in Bangladesh. Although the National TB control program of Bangladesh is implementing a comprehensive expansion of TB control strategies, logistical challenges exist, and there is significant uncertainty concerning the disease burden. Mathematical modelling of TB is considered one of the most effective ways to understand the dynamics of infection transmission and allows quantification of parameters in different settings, including Bangladesh. In this study, we present a two-strain mathematical modelling framework to explore the dynamics of drug-susceptible (DS) and multidrug-resistant (MDR) TB in Bangladesh. We calibrated the model using DS and MDR-TB annual incidence data from Bangladesh from years 2001 to 2015. Further, we performed a sensitivity analysis of the model parameters and found that the contact rate of both strains had the largest influence on the basic reproduction numbers [Formula: see text] and [Formula: see text] of DS and MDR-TB, respectively. Increasingly powerful intervention strategies were developed, with realistic impact and coverage determined with the help of local staff. We simulated for the period from 2020 to 2035. Here, we projected the DS and MDR-TB burden (as measured by the number of incident cases and mortality) under a range of intervention scenarios to determine which of these scenario is the most effective at reducing burden. Of the single-intervention strategies, enhanced case detection is the most effective and prompt in reducing DS and MDR-TB incidence and mortality in Bangladesh and that with GeneXpert testing was also highly effective in decreasing the burden of MDR-TB. Our findings also suggest combining additional interventions simultaneously leads to greater effectiveness, particularly for MDR-TB, which we estimate requires a modest investment to substantially reduce, whereas DS-TB requires a strong sustained investment.

摘要

肺结核(TB)是孟加拉国的一个主要公共卫生问题。尽管孟加拉国国家结核病控制规划正在全面扩大结核病控制战略,但仍存在后勤挑战,而且对疾病负担存在很大的不确定性。结核病的数学建模被认为是了解感染传播动态的最有效方法之一,并且可以在不同环境(包括孟加拉国)中量化参数。在这项研究中,我们提出了一个两菌株数学建模框架,以探索孟加拉国耐多药(MDR)和耐多药结核病(MDR-TB)的动态。我们使用孟加拉国 2001 年至 2015 年的耐多药和耐多药结核病年度发病率数据对模型进行了校准。此外,我们对模型参数进行了敏感性分析,发现两种菌株的接触率对耐多药和耐多药结核病的基本繁殖数[公式:见文本]和[公式:见文本]的影响最大。制定了越来越强大的干预策略,并在当地工作人员的帮助下确定了其实际影响和覆盖范围。我们对 2020 年至 2035 年期间进行了模拟。在这里,我们根据一系列干预方案模拟了耐多药和耐多药结核病(以新发病例和死亡率衡量)的负担,以确定这些方案中哪一种最有效降低负担。在单一干预策略中,增强病例发现是最有效的,可迅速降低孟加拉国耐多药和耐多药结核病的发病率和死亡率,而 GeneXpert 检测也可有效降低耐多药结核病的负担。我们的研究结果还表明,同时结合其他干预措施会更有效,特别是对耐多药结核病,我们估计只需适度投资就可以大大减少耐多药结核病的负担,而耐多药结核病则需要强有力的持续投资。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/837b/7902856/02c6fa5d9f90/41598_2021_83768_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验