Suppr超能文献

人工介入的可解释性先验。

Human-in-the-Loop Interpretability Prior.

作者信息

Lage Isaac, Ross Andrew Slavin, Kim Been, Gershman Samuel J, Doshi-Velez Finale

机构信息

Department of Computer Science, Harvard University.

Google Brain.

出版信息

Adv Neural Inf Process Syst. 2018 Dec;31.

Abstract

We often desire our models to be interpretable as well as accurate. Prior work on optimizing models for interpretability has relied on easy-to-quantify proxies for interpretability, such as sparsity or the number of operations required. In this work, we optimize for interpretability by including humans in the optimization loop. We develop an algorithm that minimizes the number of user studies to find models that are both predictive and interpretable and demonstrate our approach on several data sets. Our human subjects results show trends towards different proxy notions of interpretability on different datasets, which suggests that different proxies are preferred on different tasks.

摘要

我们通常期望我们的模型既准确又可解释。先前为提高模型可解释性而进行的工作依赖于易于量化的可解释性代理指标,例如稀疏性或所需的操作数量。在这项工作中,我们通过将人类纳入优化循环来优化可解释性。我们开发了一种算法,该算法可最大限度地减少用户研究的数量,以找到既具有预测性又具有可解释性的模型,并在多个数据集上展示了我们的方法。我们的人体实验结果表明,在不同数据集上,可解释性的不同代理概念呈现出不同趋势,这表明在不同任务中,人们更喜欢不同的代理指标。

相似文献

1
Human-in-the-Loop Interpretability Prior.
Adv Neural Inf Process Syst. 2018 Dec;31.
2
Interpretable Decision Sets: A Joint Framework for Description and Prediction.
KDD. 2016 Aug;2016:1675-1684. doi: 10.1145/2939672.2939874.
3
Building interpretable predictive models for pediatric hospital readmission using Tree-Lasso logistic regression.
Artif Intell Med. 2016 Sep;72:12-21. doi: 10.1016/j.artmed.2016.07.003. Epub 2016 Jul 29.
4
Topic Modeling for Interpretable Text Classification From EHRs.
Front Big Data. 2022 May 4;5:846930. doi: 10.3389/fdata.2022.846930. eCollection 2022.
5
Human Evaluation of Models Built for Interpretability.
Proc AAAI Conf Hum Comput Crowdsourc. 2019;7(1):59-67. Epub 2019 Oct 28.
6
Balancing accuracy and interpretability of machine learning approaches for radiation treatment outcomes modeling.
BJR Open. 2019 Jul 4;1(1):20190021. doi: 10.1259/bjro.20190021. eCollection 2019.
7
Machine learning of material properties: Predictive and interpretable multilinear models.
Sci Adv. 2022 May 6;8(18):eabm7185. doi: 10.1126/sciadv.abm7185.
8
Ant colony optimization algorithm for interpretable Bayesian classifiers combination: application to medical predictions.
PLoS One. 2014 Feb 3;9(2):e86456. doi: 10.1371/journal.pone.0086456. eCollection 2014.
9
Orthogonal Inductive Matrix Completion.
IEEE Trans Neural Netw Learn Syst. 2023 May;34(5):2259-2270. doi: 10.1109/TNNLS.2021.3106155. Epub 2023 May 2.
10
Novel mixed integer optimization sparse regression approach in chemometrics.
Anal Chim Acta. 2020 Nov 15;1137:115-124. doi: 10.1016/j.aca.2020.08.054. Epub 2020 Sep 2.

引用本文的文献

1
Enhancement Strategies of Calcium Looping Technology and CaO-Based Sorbents for Carbon Capture.
Small. 2025 Apr;21(13):e2412463. doi: 10.1002/smll.202412463. Epub 2025 Feb 28.
2
On the interpretability of part-prototype based classifiers: a human centric analysis.
Sci Rep. 2023 Dec 28;13(1):23088. doi: 10.1038/s41598-023-49854-z.
3
Perspectives on incorporating expert feedback into model updates.
Patterns (N Y). 2023 Jul 14;4(7):100780. doi: 10.1016/j.patter.2023.100780.
4
Towards a Visualizable, De-identified Synthetic Biomarker of Human Movement Disorders.
J Parkinsons Dis. 2022 Aug 27;1(-1):2085-2096. doi: 10.3233/JPD-223351.
5
Scrutinizing XAI using linear ground-truth data with suppressor variables.
Mach Learn. 2022;111(5):1903-1923. doi: 10.1007/s10994-022-06167-y. Epub 2022 Apr 13.
6
On Interpretability of Artificial Neural Networks: A Survey.
IEEE Trans Radiat Plasma Med Sci. 2021 Nov;5(6):741-760. doi: 10.1109/trpms.2021.3066428. Epub 2021 Mar 17.
8
The Role of Soft Robotic Micromachines in the Future of Medical Devices and Personalized Medicine.
Micromachines (Basel). 2021 Dec 26;13(1):28. doi: 10.3390/mi13010028.
10
A Review of Recent Deep Learning Approaches in Human-Centered Machine Learning.
Sensors (Basel). 2021 Apr 3;21(7):2514. doi: 10.3390/s21072514.

本文引用的文献

1
Interpretable Decision Sets: A Joint Framework for Description and Prediction.
KDD. 2016 Aug;2016:1675-1684. doi: 10.1145/2939672.2939874.
2
Bayesian support vector regression using a unified loss function.
IEEE Trans Neural Netw. 2004 Jan;15(1):29-44. doi: 10.1109/TNN.2003.820830.
3
Selected techniques for data mining in medicine.
Artif Intell Med. 1999 May;16(1):3-23. doi: 10.1016/s0933-3657(98)00062-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验