Suppr超能文献

针对可解释性构建的模型的人工评估。

Human Evaluation of Models Built for Interpretability.

作者信息

Lage Isaac, Chen Emily, He Jeffrey, Narayanan Menaka, Kim Been, Gershman Samuel J, Doshi-Velez Finale

机构信息

Harvard University.

Google.

出版信息

Proc AAAI Conf Hum Comput Crowdsourc. 2019;7(1):59-67. Epub 2019 Oct 28.

Abstract

Recent years have seen a boom in interest in interpretable machine learning systems built on models that can be understood, at least to some degree, by domain experts. However, exactly what kinds of models are truly human-interpretable remains poorly understood. This work advances our understanding of precisely which factors make models interpretable in the context of decision sets, a specific class of logic-based model. We conduct carefully controlled human-subject experiments in two domains across three tasks based on human-simulatability through which we identify specific types of complexity that affect performance more heavily than others-trends that are consistent across tasks and domains. These results can inform the choice of regularizers during optimization to learn more interpretable models, and their consistency suggests that there may exist common design principles for interpretable machine learning systems.

摘要

近年来,人们对基于模型构建的可解释机器学习系统兴趣大增,这些模型至少在一定程度上能够被领域专家理解。然而,究竟哪些类型的模型才是真正可被人类解释的,目前仍知之甚少。这项工作推进了我们对在决策集(一种特定类型的基于逻辑的模型)背景下使模型可解释的精确因素的理解。我们基于人类可模拟性在两个领域的三项任务中进行了精心控制的人体实验,通过这些实验我们识别出了比其他因素对性能影响更大的特定类型的复杂性——这些趋势在不同任务和领域中是一致的。这些结果可以为优化过程中选择正则化器以学习更可解释的模型提供参考,并且它们的一致性表明,可解释机器学习系统可能存在共同的设计原则。

相似文献

1
Human Evaluation of Models Built for Interpretability.针对可解释性构建的模型的人工评估。
Proc AAAI Conf Hum Comput Crowdsourc. 2019;7(1):59-67. Epub 2019 Oct 28.
2
No silver bullet: interpretable ML models must be explained.没有万灵药:可解释的机器学习模型必须得到解释。
Front Artif Intell. 2023 Apr 24;6:1128212. doi: 10.3389/frai.2023.1128212. eCollection 2023.
4
Definitions, methods, and applications in interpretable machine learning.可解释机器学习中的定义、方法和应用。
Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22071-22080. doi: 10.1073/pnas.1900654116. Epub 2019 Oct 16.
6
Learning With Interpretable Structure From Gated RNN.基于门控 RNN 的可解释结构学习。
IEEE Trans Neural Netw Learn Syst. 2020 Jul;31(7):2267-2279. doi: 10.1109/TNNLS.2020.2967051. Epub 2020 Feb 13.

引用本文的文献

3
Leveraging explanations in interactive machine learning: An overview.交互式机器学习中的解释利用:综述。
Front Artif Intell. 2023 Feb 23;6:1066049. doi: 10.3389/frai.2023.1066049. eCollection 2023.
7
What is Interpretability?什么是可解释性?
Philos Technol. 2021;34(4):833-862. doi: 10.1007/s13347-020-00435-2. Epub 2020 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验