文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

针对可解释性构建的模型的人工评估。

Human Evaluation of Models Built for Interpretability.

作者信息

Lage Isaac, Chen Emily, He Jeffrey, Narayanan Menaka, Kim Been, Gershman Samuel J, Doshi-Velez Finale

机构信息

Harvard University.

Google.

出版信息

Proc AAAI Conf Hum Comput Crowdsourc. 2019;7(1):59-67. Epub 2019 Oct 28.


DOI:
PMID:33623933
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7899148/
Abstract

Recent years have seen a boom in interest in interpretable machine learning systems built on models that can be understood, at least to some degree, by domain experts. However, exactly what kinds of models are truly human-interpretable remains poorly understood. This work advances our understanding of precisely which factors make models interpretable in the context of decision sets, a specific class of logic-based model. We conduct carefully controlled human-subject experiments in two domains across three tasks based on human-simulatability through which we identify specific types of complexity that affect performance more heavily than others-trends that are consistent across tasks and domains. These results can inform the choice of regularizers during optimization to learn more interpretable models, and their consistency suggests that there may exist common design principles for interpretable machine learning systems.

摘要

近年来,人们对基于模型构建的可解释机器学习系统兴趣大增,这些模型至少在一定程度上能够被领域专家理解。然而,究竟哪些类型的模型才是真正可被人类解释的,目前仍知之甚少。这项工作推进了我们对在决策集(一种特定类型的基于逻辑的模型)背景下使模型可解释的精确因素的理解。我们基于人类可模拟性在两个领域的三项任务中进行了精心控制的人体实验,通过这些实验我们识别出了比其他因素对性能影响更大的特定类型的复杂性——这些趋势在不同任务和领域中是一致的。这些结果可以为优化过程中选择正则化器以学习更可解释的模型提供参考,并且它们的一致性表明,可解释机器学习系统可能存在共同的设计原则。

相似文献

[1]
Human Evaluation of Models Built for Interpretability.

Proc AAAI Conf Hum Comput Crowdsourc. 2019

[2]
No silver bullet: interpretable ML models must be explained.

Front Artif Intell. 2023-4-24

[3]
Interpretable Decision Sets: A Joint Framework for Description and Prediction.

KDD. 2016-8

[4]
Definitions, methods, and applications in interpretable machine learning.

Proc Natl Acad Sci U S A. 2019-10-16

[5]
SMILE: systems metabolomics using interpretable learning and evolution.

BMC Bioinformatics. 2021-5-28

[6]
Learning With Interpretable Structure From Gated RNN.

IEEE Trans Neural Netw Learn Syst. 2020-2-13

[7]
Graph-Powered Interpretable Machine Learning Models for Abnormality Detection in Ego-Things Network.

Sensors (Basel). 2022-3-15

[8]
Human-in-the-Loop Interpretability Prior.

Adv Neural Inf Process Syst. 2018-12

[9]
White box radial basis function classifiers with component selection for clinical prediction models.

Artif Intell Med. 2013-10-18

[10]
TNT: An Interpretable Tree-Network-Tree Learning Framework using Knowledge Distillation.

Entropy (Basel). 2020-10-24

引用本文的文献

[1]
A comprehensive analysis of perturbation methods in explainable AI feature attribution validation for neural time series classifiers.

Sci Rep. 2025-7-22

[2]
How people reason with counterfactual and causal explanations for Artificial Intelligence decisions in familiar and unfamiliar domains.

Mem Cognit. 2023-10

[3]
Leveraging explanations in interactive machine learning: An overview.

Front Artif Intell. 2023-2-23

[4]
Application of Artificial Intelligence in Pathology: Trends and Challenges.

Diagnostics (Basel). 2022-11-15

[5]
The effect of machine learning explanations on user trust for automated diagnosis of COVID-19.

Comput Biol Med. 2022-7

[6]
Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond.

Inf Fusion. 2022-1

[7]
What is Interpretability?

Philos Technol. 2021

[8]
Interpretability of Machine Learning Solutions in Public Healthcare: The CRISP-ML Approach.

Front Big Data. 2021-5-26

[9]
A Review of Recent Deep Learning Approaches in Human-Centered Machine Learning.

Sensors (Basel). 2021-4-3

本文引用的文献

[1]
Interpretable Decision Sets: A Joint Framework for Description and Prediction.

KDD. 2016-8

[2]
Interface design principles for usable decision support: a targeted review of best practices for clinical prescribing interventions.

J Biomed Inform. 2012-9-17

[3]
The magical number seven plus or minus two: some limits on our capacity for processing information.

Psychol Rev. 1956-3

[4]
Minimization of Boolean complexity in human concept learning.

Nature. 2000-10-5

[5]
A feature-integration theory of attention.

Cogn Psychol. 1980-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索