Suppr超能文献

基于时间反转的复杂介质中自导航三维声镊

Self-Navigated 3D Acoustic Tweezers in Complex Media Based on Time Reversal.

作者信息

Yang Ye, Ma Teng, Li Sinan, Zhang Qi, Huang Jiqing, Liu Yifei, Zhuang Jianwei, Li Yongchuan, Du Xuemin, Niu Lili, Xiao Yang, Wang Congzhi, Cai Feiyan, Zheng Hairong

机构信息

Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Shenzhen College of Advanced Technology, University of the Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Research (Wash D C). 2021 Jan 4;2021:9781394. doi: 10.34133/2021/9781394. eCollection 2021.

Abstract

Acoustic tweezers have great application prospects because they allow noncontact and noninvasive manipulation of microparticles in a wide range of media. However, the nontransparency and heterogeneity of media in practical applications complicate particle trapping and manipulation. In this study, we designed a 1.04 MHz 256-element 2D matrix array for 3D acoustic tweezers to guide and monitor the entire process using real-time 3D ultrasonic images, thereby enabling acoustic manipulation in nontransparent media. Furthermore, we successfully performed dynamic 3D manipulations on multiple microparticles using multifoci and vortex traps. We achieved 3D particle manipulation in heterogeneous media (through resin baffle and macaque and human skulls) by introducing a method based on the time reversal principle to correct the phase and amplitude distortions of the acoustic waves. Our results suggest cutting-edge applications of acoustic tweezers such as acoustical drug delivery, controlled micromachine transfer, and precise treatment.

摘要

声镊具有广阔的应用前景,因为它们能够在多种介质中对微粒进行非接触、无创操作。然而,实际应用中介质的不透明性和不均匀性使粒子捕获和操作变得复杂。在本研究中,我们为三维声镊设计了一个1.04兆赫兹的256元二维矩阵阵列,以利用实时三维超声图像引导和监测整个过程,从而实现非透明介质中的声学操作。此外,我们使用多焦点和涡旋阱成功地对多个微粒进行了动态三维操作。通过引入一种基于时间反转原理的方法来校正声波的相位和幅度失真,我们在异质介质(通过树脂挡板以及猕猴和人类头骨)中实现了三维粒子操纵。我们的结果表明了声镊在声学药物递送、受控微机械转移和精确治疗等前沿应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fcf/7877394/68573da02b18/RESEARCH2021-9781394.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验