Suppr超能文献

机器学习赋能的实时声阱:一种增加 MRI 引导微泡积累的增强技术。

Machine Learning-Empowered Real-Time Acoustic Trapping: An Enabling Technique for Increasing MRI-Guided Microbubble Accumulation.

机构信息

Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China.

Medical Imaging Center, Shenzhen Hospital of Southern Medical University, Shenzhen 518005, China.

出版信息

Sensors (Basel). 2024 Sep 30;24(19):6342. doi: 10.3390/s24196342.

Abstract

Acoustic trap, using ultrasound interference to ensnare bioparticles, has emerged as a versatile tool for life sciences due to its non-invasive nature. Bolstered by magnetic resonance imaging's advances in sensing acoustic interference and tracking drug carriers (e.g., microbubble), acoustic trap holds promise for increasing MRI-guided microbubbles (MBs) accumulation in target microvessels, improving drug carrier concentration. However, accurate trap generation remains challenging due to complex ultrasound propagation in tissues. Moreover, the MBs' short lifetime demands high computation efficiency for trap position adjustments based on real-time MRI-guided carrier monitoring. To this end, we propose a machine learning-based model to modulate the transducer array. Our model delivers accurate prediction of both time-of-flight (ToF) and pressure amplitude, achieving low average prediction errors for ToF (-0.45 µs to 0.67 µs, with only a few isolated outliers) and amplitude (-0.34% to 1.75%). Compared with the existing methods, our model enables rapid prediction (<10 ms), achieving a four-order of magnitude improvement in computational efficiency. Validation results based on different transducer sizes and penetration depths support the model's adaptability and potential for future ultrasound treatments.

摘要

声阱利用超声干涉来捕获生物粒子,由于其非侵入性的特点,已成为生命科学领域的一种多功能工具。由于磁共振成像在感应声干涉和跟踪药物载体(如微泡)方面的进步,声阱有望增加 MRI 引导的微泡(MBs)在靶微血管中的积累,从而提高药物载体的浓度。然而,由于组织中复杂的超声传播,准确的陷阱生成仍然具有挑战性。此外,由于微泡的短寿命,需要基于实时 MRI 引导的载体监测来调整陷阱位置,这就需要较高的计算效率。为此,我们提出了一种基于机器学习的模型来调制换能器阵列。我们的模型可以准确地预测飞行时间(ToF)和压力幅度,实现了 ToF(-0.45µs 至 0.67µs,只有少数孤立的异常值)和幅度(-0.34%至 1.75%)的低平均预测误差。与现有方法相比,我们的模型可以实现快速预测(<10ms),计算效率提高了四个数量级。基于不同换能器尺寸和穿透深度的验证结果支持了该模型的适应性和未来超声治疗的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8044/11478462/6b542bff546e/sensors-24-06342-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验