Suppr超能文献

OncoTree:精准肿瘤学的癌症分类系统。

OncoTree: A Cancer Classification System for Precision Oncology.

机构信息

Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY.

Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.

出版信息

JCO Clin Cancer Inform. 2021 Feb;5:221-230. doi: 10.1200/CCI.20.00108.

Abstract

PURPOSE

Cancer classification is foundational for patient care and oncology research. Systems such as International Classification of Diseases for Oncology (ICD-O), Systematized Nomenclature of Medicine Clinical Terms (SNOMED-CT), and National Cancer Institute Thesaurus (NCIt) provide large sets of cancer classification terminologies but they lack a dynamic modernized cancer classification platform that addresses the fast-evolving needs in clinical reporting of genomic sequencing results and associated oncology research.

METHODS

To meet these needs, we have developed OncoTree, an open-source cancer classification system. It is maintained by a cross-institutional committee of oncologists, pathologists, scientists, and engineers, accessible via an open-source Web user interface and an application programming interface.

RESULTS

OncoTree currently includes 868 tumor types across 32 organ sites. OncoTree has been adopted as the tumor classification system for American Association for Cancer Research (AACR) Project Genomics Evidence Neoplasia Information Exchange (GENIE), a large genomic and clinical data-sharing consortium, and for clinical molecular testing efforts at Memorial Sloan Kettering Cancer Center and Dana-Farber Cancer Institute. It is also used by precision oncology tools such as OncoKB and cBioPortal for Cancer Genomics.

CONCLUSION

OncoTree is a dynamic and flexible community-driven cancer classification platform encompassing rare and common cancers that provides clinically relevant and appropriately granular cancer classification for clinical decision support systems and oncology research.

摘要

目的

癌症分类是患者护理和肿瘤学研究的基础。国际肿瘤疾病分类(ICD-O)、医学系统命名法临床术语(SNOMED-CT)和国家癌症研究所术语(NCIt)等系统提供了大量的癌症分类术语,但它们缺乏一个动态的现代化癌症分类平台,无法满足临床报告基因组测序结果和相关肿瘤学研究中快速发展的需求。

方法

为了满足这些需求,我们开发了 OncoTree,这是一个开源的癌症分类系统。它由一个跨机构的肿瘤学家、病理学家、科学家和工程师委员会维护,可通过开源 Web 用户界面和应用程序编程接口访问。

结果

OncoTree 目前包括 32 个器官部位的 868 种肿瘤类型。OncoTree 已被美国癌症研究协会(AACR)项目基因组学证据肿瘤信息交换(GENIE)采用为肿瘤分类系统,该项目是一个大型基因组和临床数据共享联盟,并且在纪念斯隆凯特琳癌症中心和丹娜-法伯癌症研究所进行临床分子检测工作时也采用了该系统。它还被 OncoKB 和 cBioPortal for Cancer Genomics 等精准肿瘤学工具用于癌症分类。

结论

OncoTree 是一个动态灵活的社区驱动的癌症分类平台,涵盖了罕见和常见的癌症,为临床决策支持系统和肿瘤学研究提供了临床相关和适当细化的癌症分类。

相似文献

5
[OncoTree-A new classification system for precision oncology].[肿瘤树——一种用于精准肿瘤学的新分类系统]
Chirurgie (Heidelb). 2023 May;94(5):466-467. doi: 10.1007/s00104-023-01865-2. Epub 2023 Apr 15.
10
Bringing Precision Medicine to Community Oncologists.将精准医学带给社区肿瘤学家。
Cancer Discov. 2017 Jan;7(1):6-7. doi: 10.1158/2159-8290.CD-NB2016-147. Epub 2016 Nov 18.

引用本文的文献

本文引用的文献

2
Commentary: Cancer research quality and tumour classification.评论:癌症研究质量与肿瘤分类
Tumour Biol. 2020 Feb;42(2):1010428320907544. doi: 10.1177/1010428320907544.
3
Cancer taxonomy: pathology beyond pathology.癌症分类学:超越病理学的病理。
Eur J Cancer. 2019 Jul;115:57-60. doi: 10.1016/j.ejca.2019.03.026. Epub 2019 May 17.
5
OncoKB: A Precision Oncology Knowledge Base.OncoKB:一个精准肿瘤知识库。
JCO Precis Oncol. 2017 Jul;2017. doi: 10.1200/PO.17.00011. Epub 2017 May 16.
10
PD-1 Blockade in Tumors with Mismatch-Repair Deficiency.错配修复缺陷肿瘤中的程序性死亡受体-1阻断
N Engl J Med. 2015 Jun 25;372(26):2509-20. doi: 10.1056/NEJMoa1500596. Epub 2015 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验