Suppr超能文献

评论:癌症研究质量与肿瘤分类

Commentary: Cancer research quality and tumour classification.

作者信息

Cree Ian A, Indave B Iciar

机构信息

International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France.

出版信息

Tumour Biol. 2020 Feb;42(2):1010428320907544. doi: 10.1177/1010428320907544.

Abstract

Cancer researchers require accurate diagnoses for the samples, cell lines, patients or populations that they study. These diagnoses are underpinned by an internationally accepted taxonomy - the World Health Organization Classification of Tumours. This is still largely based on the histopathological examination of biopsy specimens, but increasingly also molecular methods and radiological examination of patients. Classifications evolve as new evidence arises, and for tumours that evidence is available in a quantity that is both remarkable and daunting. Evaluating this deluge of new information and incorporating it into the World Health Organization Classification of Tumours is now the responsibility of an editorial board, and up to 200 editors and authors work on each system to update it within the new 5th edition. Just as cancer researchers depend on the classification for diagnoses, so too the classification depends on the generation of high-quality, trustworthy data by cancer researchers. It is not just a case of quantity but quality too. Scientific fraud is thankfully rare, but high-profile cases are damaging and standards need to improve, not least to ensure that accurate information enters the classification.

摘要

癌症研究人员需要对他们所研究的样本、细胞系、患者或群体进行准确诊断。这些诊断以国际公认的分类法——世界卫生组织肿瘤分类为基础。这在很大程度上仍基于活检标本的组织病理学检查,但越来越多地也依赖分子方法和对患者的放射学检查。随着新证据的出现,分类会不断演变,而对于肿瘤来说,这些证据的数量既惊人又令人望而生畏。评估这大量的新信息并将其纳入世界卫生组织肿瘤分类,现在是一个编辑委员会的职责,每个分类系统有多达200名编辑和作者致力于在新的第五版中对其进行更新。正如癌症研究人员依靠分类进行诊断一样,分类也依赖于癌症研究人员生成高质量、可靠的数据。这不仅关乎数量,也关乎质量。所幸科学欺诈很少见,但引人注目的案例具有破坏性,标准需要提高,尤其是要确保准确信息纳入分类之中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验