Suppr超能文献

基于加权张量核范数正则化的动态 MRI 重建。

Dynamic MRI Reconstruction via Weighted Tensor Nuclear Norm Regularizer.

出版信息

IEEE J Biomed Health Inform. 2021 Aug;25(8):3052-3060. doi: 10.1109/JBHI.2021.3061793. Epub 2021 Aug 5.

Abstract

In this paper, we propose a novel multi-dimensional reconstruction method based on the low-rank plus sparse tensor (L+S) decomposition model to reconstruct dynamic magnetic resonance imaging (dMRI). The multi-dimensional reconstruction method is formulated using a non-convex alternating direction method of multipliers (ADMM), where the weighted tensor nuclear norm (WTNN) and l-norm are used to enforce the low-rank in L and the sparsity in S, respectively. In particular, the weights used in the WTNN are sorted in a non-descending order, and we obtain a closed-form optimal solution of the WTNN minimization problem. The theoretical properties provided guarantee the weak convergence of our reconstruction method. In addition, a fast inexact reconstruction method is proposed to increase imaging speed and efficiency. Experimental results demonstrate that both of our reconstruction methods can achieve higher reconstruction quality than the state-of-the-art reconstruction methods.

摘要

在本文中,我们提出了一种新的基于低秩稀疏张量分解模型的多维重建方法,用于重建动态磁共振成像(dMRI)。多维重建方法采用非凸交替方向乘子法(ADMM)进行公式化,其中加权张量核范数(WTNN)和 l-范数分别用于在 L 中强制低秩和在 S 中强制稀疏。特别是,在 WTNN 中使用的权重按非降序排序,并且我们获得了 WTNN 最小化问题的闭式最优解。所提供的理论性质保证了我们的重建方法的弱收敛性。此外,还提出了一种快速不精确的重建方法,以提高成像速度和效率。实验结果表明,我们的两种重建方法都可以比现有的先进重建方法实现更高的重建质量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验