Suppr超能文献

基因组方法在保护和可持续管理亚马逊濒危物种中的应用。

Genomic approach for conservation and the sustainable management of endangered species of the Amazon.

机构信息

Human and Medical Genetics Lab, Biological Sciences Institute, Federal University of Pará, Belem, PA, Brazil.

Federal University of Pará -Campus Bragança, Alameda Leandro Ribeiro s/n, Bragança, PA, Brazil.

出版信息

PLoS One. 2021 Feb 24;16(2):e0240002. doi: 10.1371/journal.pone.0240002. eCollection 2021.

Abstract

A broad panel of potentially amplifiable microsatellite loci and a multiplex system were developed for the Amazonian symbol fish species Arapaima gigas, which is currently in high danger of extinction due to the disorderly fishing exploitation. Several factors have contributed to the increase of this threat, among which we highlight the lack of genetic information about the structure and taxonomic status of the species, as well as the lack of accurate tools for evaluation of the effectivity of current management programs. Based on Arapaima gigas' whole genome, available at the NCBI database (ID: 12404), a total of 95,098 unique perfect microsatellites were identified, including their proposed primers. From this panel, a multiplex system containing 12 tetranucleotide microsatellite markers was validated. These tools are valuable for research in as many areas as bioinformatics, ecology, genetics, evolution and comparative studies, since they are able to provide more accurate information for fishing management, conservation of wild populations and genetic management of aquaculture.

摘要

开发了一组广泛的、潜在可扩增的微卫星基因座和一个多重扩增系统,用于亚马逊象征鱼类巨骨舌鱼。由于无序的捕捞开发,该物种目前正处于高度灭绝的危险之中。多种因素导致了这种威胁的增加,其中我们强调缺乏有关该物种结构和分类地位的遗传信息,以及缺乏评估当前管理计划有效性的准确工具。基于可在 NCBI 数据库(ID:12404)中获得的巨骨舌鱼全基因组,共鉴定出 95098 个独特的完美微卫星,包括它们的拟议引物。从这个面板中,验证了一个包含 12 个四核苷酸微卫星标记的多重扩增系统。这些工具在生物信息学、生态学、遗传学、进化和比较研究等多个领域都具有研究价值,因为它们能够为渔业管理、野生种群保护和水产养殖遗传管理提供更准确的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8243/7904187/d1b9bc153d22/pone.0240002.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验