Suppr超能文献

使用贝叶斯深度学习进行可解释质子计算机断层摄影图像校正的校准不确定性估计。

Calibrated uncertainty estimation for interpretable proton computed tomography image correction using Bayesian deep learning.

机构信息

Department of Radiation Oncology, Stanford University, Stanford, CA 94305-5847, United States of America.

Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo 060-8648, Japan.

出版信息

Phys Med Biol. 2021 Mar 16;66(6):065029. doi: 10.1088/1361-6560/abe956.

Abstract

Integrated-type proton computed tomography (pCT) measures proton stopping power ratio (SPR) images for proton therapy treatment planning, but its image quality is degraded due to noise and scatter. Although several correction methods have been proposed, techniques that include estimation of uncertainty are limited. This study proposes a novel uncertainty-aware pCT image correction method using a Bayesian convolutional neural network (BCNN). A DenseNet-based BCNN was constructed to predict both a corrected SPR image and its uncertainty from a noisy SPR image. A total 432 noisy SPR images of 6 non-anthropomorphic and 3 head phantoms were collected with Monte Carlo simulations, while true noise-free images were calculated with known geometric and chemical components. Heteroscedastic loss and deep ensemble techniques were performed to estimate aleatoric and epistemic uncertainties by training 25 unique BCNN models. 200-epoch end-to-end training was performed for each model independently. Feasibility of the predicted uncertainty was demonstrated after applying two post-hoc calibrations and calculating spot-specific path length uncertainty distribution. For evaluation, accuracy of head SPR images and water-equivalent thickness (WET) corrected by the trained BCNN models was compared with a conventional method and non-Bayesian CNN model. BCNN-corrected SPR images represent noise-free images with high accuracy. Mean absolute error in test data was improved from 0.263 for uncorrected images to 0.0538 for BCNN-corrected images. Moreover, the calibrated uncertainty represents accurate confidence levels, and the BCNN-corrected calibrated WET was more accurate than non-Bayesian CNN with high statistical significance. Computation time for calculating one image and its uncertainties with 25 BCNN models is 0.7 s with a consumer grade GPU. Our model is able to predict accurate pCT images as well as two types of uncertainty. These uncertainties will be useful to identify potential cause of SPR errors and develop a spot-specific range margin criterion, toward elaboration of uncertainty-guided proton therapy.

摘要

集成式质子计算机断层扫描(pCT)测量质子阻止比(SPR)图像,用于质子治疗计划,但由于噪声和散射,其图像质量会下降。尽管已经提出了几种校正方法,但包含不确定性估计的技术是有限的。本研究提出了一种使用贝叶斯卷积神经网络(BCNN)的新型不确定性感知 pCT 图像校正方法。构建了一个基于 DenseNet 的 BCNN,从噪声 SPR 图像中预测校正后的 SPR 图像及其不确定性。使用蒙特卡罗模拟采集了 6 个非人体和 3 个头模型的 432 个噪声 SPR 图像,而真实无噪声图像则使用已知的几何和化学成分计算得出。通过训练 25 个独特的 BCNN 模型,采用异方差损失和深度集成技术来估计随机不确定性和认知不确定性。对每个模型独立进行 200 个周期的端到端训练。在应用两种后处理校准并计算特定点路径长度不确定性分布后,证明了预测不确定性的可行性。为了进行评估,将训练后的 BCNN 模型校正的头部 SPR 图像和水等效厚度(WET)的准确性与传统方法和非贝叶斯 CNN 模型进行了比较。BCNN 校正的 SPR 图像代表具有高精度的无噪声图像。测试数据中的平均绝对误差从未校正图像的 0.263 提高到 BCNN 校正图像的 0.0538。此外,校准后的不确定性代表了准确的置信水平,并且 BCNN 校正的校准 WET 比非贝叶斯 CNN 更准确,具有统计学意义。使用 25 个 BCNN 模型计算一个图像及其不确定性的计算时间为 0.7 秒,使用消费级 GPU。我们的模型能够准确预测 pCT 图像以及两种类型的不确定性。这些不确定性将有助于识别 SPR 误差的潜在原因,并开发特定点的范围裕度标准,以实现不确定性引导的质子治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验